Return to search

Ultrafast quantum dynamics of doped superfluid helium nanodroplets / Dynamique quantique ultra-rapide de nanogouttes d'hélium superfluide dopées

Dans cette thèse, nous étudions deux aspects de la dynamique d'impuretés atomiques interagissant avec des nanogouttes d'hélium superfluide (He) : la photo-excitation d'alcalins sur une nanogoutte et le dopage de nanogouttes contenant des tourbillons (vortex) quantiques avec des atomes de gaz rares. Nous utilisons la théorie de la fonctionnelle de la densité d'hélium ainsi que sa version dépendante du temps pour en faire la description théorique. Le premier aspect a été effectué dans le cadre d'une collaboration avec des expérimentateurs sur la photo-excitation du rubidium (Rb). Les alcalins sont une sonde très intéressante des gouttelettes d'hélium car ils résident dans leur zone de surface, où il a été prédit qu'un taux de condensation de Bose-Einstein de 100% était possible en raison d'une densité inférieure à celle de l'hélium superfluide. Nos simulations montrent que les états excités 5p et 6p désorbent à des échelles de temps très différentes, séparées par 2 ordres de grandeur (~100 ps et ~1 ps pour 5p et 6p respectivement). Ces résultats sont en accord avec ceux de l'expérience pompe-sonde à l'échelle femtoseconde qui a étudié la photodesorption d'atomes de Rb. Cependant, dans nos simulations, l'excitation vers 5pPi_{3/2} aboutit à un exciplexe RbHe lié à la surface, contrairement à l'expérience où RbHe est éjecté. L'introduction de la relaxation de spin de Pi_{3/2} à Pi_{1/2} nous a permis de résoudre ce désaccord, l'exciplexe RbHe ayant alors assez d'énergie pour désorber. Le deuxième aspect concerne une investigation purement théorique inspirée par les travaux récents de Gomez et Vilesov et al., où les tourbillons quantiques étaient visualisés en dopant les nanogouttes d'hélium avec des atomes d'argent, puis en les faisant atterrir en douceur (soft landing) sur un écran de carbone. Les images au microscope électronique montrent de longs filaments d'agrégats d'atomes d'argent qui s'étaient accumulés le long des coeurs des vortex. La formation de réseaux de tourbillons quantiques à l'intérieur de nanogoutelettes dopées par du xénon est également mise en évidence par diffraction de rayons X qui montrent des pics de Bragg caractéristiques d'agrégats de xénon piégés dans les coeurs des vortex. Nous avons d'abord étudié des collisions frontales entre un atome de xénon, héliophile, et une nanogoutte de 1000 héliums, et comparé les résultats à ceux d'une étude précédente sur le même processus avec le césium (Cs), qui est héliophobe. Dans le cas de Xe une «boule de neige» se forme autour de lui quand il entre dans la nanogoutte, et il lui faut beaucoup plus d'énergie qu'au Cs pour qu'il puisse en ressortir. Quand il le fait, il emporte des héliums avec lui, contrairement au Cs. Nous avons ensuite simulé des collisions entre Ar/Xe et des nanogouttes d'hélium superfluides pour différentes vitesses initiales et paramètres d'impact afin de déterminer leur section efficace de capture. Ces simulations ont ensuite été répétées pour des gouttelettes hébergeant un vortex quantique. On observe que l'impact des impuretés induit de grandes déformations de flexion et de torsion de la ligne de vortex, allant jusqu'à la génération d'ondes de Kelvin hélicoïdales qui se propagent le long du coeur du vortex. Ar/Xe est bien finalement capturé par le vortex, mais pas dans son coeur. Nous avons également découvert que l'existence d'un réseau de 6 lignes de vortex dont les noyaux sont remplis d'atomes d'Ar donne une rigidité accrue à la nanogoutte qui permet de stabiliser le système nano-goutte + vortex même à de faibles vitesses angulaires. Nos simulations impliquant des nanogouttes d'hélium comportant des tourbillons quantiques ouvrent la voie à d'autres investigations sur des nanogouttes hébergeant un ensemble de vortex, en collision avec de multiples impuretés. / In this thesis we investigate two aspects of the dynamics of atomic impurities interacting with superfluid helium (He) nanodroplets, namely the photo-excitation of alkalis on a nanodroplet and the doping process of nanodroplets hosting quantised vortices with noble gas atoms. For the theoretical investigations we use He density functional theory and its time-dependent version. The first aspect involves a joint experimental and theoretical collaboration that focusses on the photo-excitation of the alkali rubidium (Rb). Alkalis are a very interesting probe of He droplets since they reside in their surface region, where it has been argued that almost 100% Bose-Einstein condensation could be achieved due to a density that is lower than in bulk superfluid He. In our simulations we find that states excited to the 5p and 6p manifold desorb at very different timescales, separated by 2 orders of magnitude (~100 ps and ~1 ps for 5p and 6p respectively). This is in good agreement with experimental results where the desorption behaviour of photo-excited Rb atoms is determined using a femtosecond pump-probe scheme. However, in our simulations excitation to the 5pPi_{3/2}-state results in a surface-bound RbHe exciplex, contrary to the experimental case where the RbHe exciplex desorbs from the droplets surface. Introducing spin-relaxation from Pi_{3/2} to Pi_{1/2} into the simulations, the RbHe exciplex is able to desorb from the droplet's surface, which resolves this contradiction. The second aspect concerns a purely theoretical investigation that is inspired by recent work of Gomez and Vilesov et al., where quantised vortices were visualised by doping He nanodroplets with silver atoms, subsequently "soft landing" them on a carbon screen. Electron-microscope images show long filaments of silver atom clusters that accumulated along the vortex cores. Also the formation of quantum-vortex lattices inside nanodroplets is evidenced by using X-ray diffractive imaging to visualise the characteristic Bragg patterns from xenon (Xe) clusters trapped inside the vortex cores. First, head-on collisions between heliophilic Xe and a He nanodroplet made of 1000 He atoms are studied. The results are then compared with the results of a previous study of an equivalent kinematic case with cesium (Cs), which is heliophobic. Xe acquires a "snowball" of He around itself when it traverses the droplet and much more kinetic energy is required before Xe is able to pierce the droplet completely. When it does, it takes away some He with it, contrary to the Cs case. Next, collisions between argon (Ar)/Xe and pristine superfluid He nanodroplets are performed for various initial velocities and impact parameters to determine the effective cross-section for capture. Finally, the simulations are then repeated for droplets hosting a single quantised vortex line. It is observed that the impact of the impurities induces large bending and twisting excitations of the vortex line, including the generation of helical Kelvin waves propagating along the vortex core. We conclude that Ar/Xe is captured by the quantised vortex line, although not in its core. Also we find that a He droplet, hosting a 6-vortex line array whose cores are filled with Ar atoms, results in added rigidity to the system which stabilises the droplets at low angular velocities. Our simulations involving droplets hosting quantum vortices open the way to further investigations on droplets hosting an array of vortices, involving multiple impurities.

Identiferoai:union.ndltd.org:theses.fr/2018TOU30145
Date15 June 2018
CreatorsCoppens, François M. G. J.
ContributorsToulouse 3, Halberstadt, Nadine
Source SetsDépôt national des thèses électroniques françaises
LanguageFrench
Detected LanguageFrench
TypeElectronic Thesis or Dissertation, Text

Page generated in 0.004 seconds