Return to search

Situation Assessment at Intersections for Driver Assistance and Automated Vehicle Control

The development of driver assistance and automated vehicle control is in process and finds its way more and more into urban traffic environments. Here, the complexity of traffic situations is highly challenging and requires system approaches to comprehend such situations. The key element is the process of situation assessment to identify critical situations in advance and derive adequate warning and intervention strategies.

This thesis introduces a system approach to establish a situation assessment process with the focus on the prediction of the driver intention. The system design is based on the Situation Awareness model by Endsley. Further, a prediction algorithm is created using Hidden Markov Models. To define the parameters of the models, an existing database is used and previously analyzed to identify reasonable variables that indicate an intended driving direction while approaching the intersection. Here, vehicle dynamics are used instead of driver inputs to enable a further extension of the prediction, i.e.\\ to predict the driving intention of other vehicles detected by sensors. High prediction rates at temporal distances of several seconds before entering the intersection are accomplished.

The prediction is integrated in a system for situation assessment including an intersection model. A Matlab tool is created with an interface to the vehicle CAN bus and the intersection modeling which uses digital map data to establish a representation of the intersection. To identify differences and similarities in the process of approaching an intersection dependent on the intersection shape and regulation, a naturalistic driving study is conducted. Here, the distance to the intersection and velocity is observed on driver inputs related to the upcoming intersection (leaving the gas pedal, pushing the brake, using the turn signal). The findings are used to determine separate prediction models dependent on shape and regulation of the upcoming intersection. The system runs in real-time and is tested in a real traffic environment. / Die Entwicklung von Fahrerassistenz und automatisiertem Fahren ist in vollem Gange und entwickelt sich zunehmend in Richtung urbanen Verkehrsraum. Hier stellen besonders komplexe Verkehrssituationen sowohl für den Fahrer als auch für Assistenzsysteme eine Herausforderung dar. Zur Bewältigung dieser Situationen sind neue Systemansätze notwendig, die eine Situationsanalyse und -bewertung beinhalten. Dieser Prozess der Situationseinschätzung ist der Schlüssel zum Erkennen von kritischen Situationen und daraus abgeleiteten Warnungs- und Eingriffsstrategien.

Diese Arbeit stellt einen Systemansatz vor, welcher den Prozess der Situationseinschätzung abbildet mit einem Fokus auf die Prädiktion der Fahrerintention. Das Systemdesign basiert dabei auf dem Situation Awareness Model von Endsley. Der Prädiktionsalgorithmus ist mit Hilfe von Hidden Markov Modellen umgesetzt. Zur Bestimmung der Modellparameter wurde eine existierende Datenbasis genutzt und zur Bestimmung von relevanten Variablen für die Prädiktion der Fahrtrichtung während der Kreuzungsannäherung analysiert. Dabei wurden Daten zur Fahrdynamik ausgewählt anstelle von Fahrereingaben um die Prädiktion später auf externe Fahrzeuge mittels Sensorinformationen zu erweitern. Es wurden hohe Prädiktionsraten bei zeitlichen Abständen von mehreren Sekunden bis zum Kreuzungseintritt erzielt.

Die Prädiktion wurde in das System zur Situationseinschätzung integriert. Weiterhin beinhaltet das System eine statische Kreuzungsmodellierung. Dabei werden digitale Kartendaten genutzt um eine Repräsentation der Kreuzung und ihrer statischen Attribute zu erzeugen und die der Kreuzungsform entsprechenden Prädiktionsmodelle auszuwählen. Das Gesamtsystem ist als Matlab Tool mit einer Schnittstelle zum CAN Bus implementiert. Weiterhin wurde eine Fahrstudie zum natürlichen Fahrverhalten durchgeführt um mögliche Unterschiede und Gemeinsamkeiten bei der Annäherung an Kreuzungen in Abhängigkeit der Form und Regulierung zu identifizieren. Hierbei wurde die Distanz zur Kreuzung und die Geschwindigkeit bei Fahrereingaben im Bezug zur folgenden Kreuzung gemessen (Gaspedalverlassen, Bremspedalbetätigung, Blinkeraktivierung). Die Ergebnisse der Studie wurden genutzt um die Notwendigkeit verschiedener Prädiktionsmodelle in Abhängigkeit von Form der Kreuzung zu bestimmen. Das System läuft in Echtzeit und wurde im realen Straßenverkehr getestet.

Identiferoai:union.ndltd.org:DRESDEN/oai:qucosa.de:bsz:ch1-qucosa-195319
Date02 February 2016
CreatorsStreubel, Thomas
ContributorsTechnische Universität Chemnitz, Fakultät für Naturwissenschaften, Prof. Dr. Karl Heinz Hoffmann, Prof. Dr. Karl Heinz Hoffmann, Prof. Dr. Josef Krems
PublisherUniversitätsbibliothek Chemnitz
Source SetsHochschulschriftenserver (HSSS) der SLUB Dresden
LanguageEnglish
Detected LanguageGerman
Typedoc-type:doctoralThesis
Formatapplication/pdf, text/plain, application/zip

Page generated in 0.0027 seconds