De part leur dimension élevée, les données de puces à ADN nécessitent l'application de méthodes statistiques pour en extraire une information pertinente. Dans le cadre de l'étude des différences entre deux agonistes de PPAR (Peroxisome Proliferator-Activated Receptor), nous avons sélectionné trois méthodes de sélection de variables : T-test, Nearest Shrunken Centroids (NSC) et Support Vector Machine – Recursive Feature Elimination. Ces méthodes ont été testées sur des données simulées et sur les données réelles de l'étude PPAR. En parallèle, une nouvelle méthodologie, MetRob, a été développée afin d'améliorer la robustesse ce ces méthodes vis à vis de la variabilité technique des puces à ADN, ainsi que leur reproductibilité. Cette nouvelle méthodologie permet principalement d'améliorer la valeur prédictive positive, c'est-à-dire la confiance accordée aux résultats. La méthode NSC s'est révélée la plus robuste et ce sont donc les résultats de cette méthode, associée à MetRob, qui ont été étudiés d'un point de vue biologique.
Identifer | oai:union.ndltd.org:CCSD/oai:tel.archives-ouvertes.fr:tel-00451969 |
Date | 03 December 2009 |
Creators | Cotillard, Aurélie |
Publisher | Ecole Centrale Paris |
Source Sets | CCSD theses-EN-ligne, France |
Language | French |
Detected Language | French |
Type | PhD thesis |
Page generated in 0.0018 seconds