Return to search

Subcritical transmutation of spent nuclear fuel

A series of fuel cycle simulations were performed using CEA's reactor physics code ERANOS 2.0 to analyze the transmutation performance of the Subcritical Advanced Burner Reactor (SABR). SABR is a fusion-fission hybrid reactor that combines the leading sodium cooled fast reactor technology with the leading tokamak plasma technology based on ITER physics. Two general fuel cycles were considered for the SABR system. The first fuel cycle is one in which all of the transuranics from light water reactors are burned in SABR. The second fuel cycle is a minor actinide burning fuel cycle in which all of the minor actinides and some of the plutonium produced in light water reactors are burned in SABR, with the excess plutonium being set aside for starting up fast reactors in the future. The minor actinide burning fuel cycle is being considered in European Scenario Studies. The fuel cycles were evaluated on the basis of TRU/MA transmutation rate, power profile, accumulated radiation damage, and decay heat to the repository. Each of the fuel cycles are compared against each other, and the minor actinide burning fuel cycles are compared against the EFIT transmutation system, and a low conversion ratio fast reactor.

Identiferoai:union.ndltd.org:GATECH/oai:smartech.gatech.edu:1853/41205
Date07 July 2011
CreatorsSommer, Christopher Michael
PublisherGeorgia Institute of Technology
Source SetsGeorgia Tech Electronic Thesis and Dissertation Archive
Detected LanguageEnglish
TypeDissertation

Page generated in 0.0017 seconds