Return to search

Characterization of a Nanocomposite Coating for PV Applications

<p>The development of nanocomposite materials has had significant influence on modern material design. Novel properties can be achieved and controlled for a diverse range of applications. The work presented here focused on characterization of polyurethane based coatings with ITO nano-inclusions. The coatings displayed high transparency in the visible range, and UV/IR shielding properties when studied with UV-Vis spectroscopy. UV/IR shielding improved with greater ITO density, with minor affect on visible transmittance. The effective medium approximation was successfully applied to ellipsometry modeling. Coatings with varying fractions of nanoparticles were analyzed. The modeled volume percent of the nanoparticles followed a strong linear trend with the known weight percentages. SEM and TEM imaging determined that majority of the particles existed in clusters. The nanoparticles were oblong shaped, 10-20nm big, randomly distributed, with no segregation to interfaces. Agglomerates varied in size, with the largest observed agglomerate being 250nm.</p> <p>Thermal stability was studied by TGA and DSC. No degradation occurred until 238°C. DSC revealed that the matrix continued to undergo modifications with consecutive runs. It was inconclusive whether the changes were from the polyurethane or dispersive agents in the system. Electron micrographs showed that segregation did not occur post-annealing. Average surface roughness increased from 3.5nm to 5nm after annealing at 120°C for several weeks. Ellipsometry results showed that film thickness decreased 20nm and 50nm before equilibriating for the 80°C and 120°C anneals respectively. The optical and thermal measurements demonstrated that the coating has great potential for improving the PV performance.</p> / Master of Applied Science (MASc)

Identiferoai:union.ndltd.org:mcmaster.ca/oai:macsphere.mcmaster.ca:11375/15306
Date10 October 2014
CreatorsJarvis, Victoria M.
ContributorsPreston, John, Mascher, Peter, Saravanamuttu, Kalaichelvi, Engineering Physics
Source SetsMcMaster University
Detected LanguageEnglish
Typethesis

Page generated in 0.0019 seconds