Vpu has been shown to possess two distinct roles in the pathogenesis of HIV. First, Vpu has been shown to down-regulate the expression of CD4 molecules at the plasma membrane of infected cells by targeting CD4 molecules for degradation in the endoplasmic reticulum. Second, Vpu promotes viral egress in specific cell lines termed non-permissive cells by mechanism that remain relatively unclear.
Therefore, experiments were conducted in order to identify cellular factors involved in the Vpu-dependent phenotype. Using full-length Vpu as bait in yeast two-hybrid experiments, several candidate cellular factors were identified. One protein, SNAPIN, was identified as a cellular factor putatively involved in the Vpu-dependent phenotype. Further experiments determined that not only do SNAPIN and Vpu interact, but that Vpu also leads to the degradation of SNAPIN by both proteasomal and lysosomal degradation pathways.
Over-expression of SNAPIN in cell lines that do not normally require Vpu expression for viral production resulted in a Vpu-dependent phenotype. While over-expression of SNAPIN in otherwise permissive cell lines significantly reduced Vpu-deficient virus production, wild type levels remained relatively constant. Importantly, no defective viral structural protein production was observed; however, intracellular p24/p55 did not accumulate suggesting that in SNAPIN expressing cells, Gag is also targeted for degradation.
In addition, the reduction of SNAPIN expression in non-permissive cell lines significantly increased viral titers in supernatants. Of particular interest, even in cells expressing Bst-2 (a previously identified cellular factor involved in the Vpu-phenotype), siRNA mediated knockdown of SNAPIN led to increased viral titers. In addition, the co-transfection of siRNAs targeting both SNAPIN and Bst-2 resulted in an additive effect, in which Vpu-deficient viral titers were nearly equivalent to wild-type titers. Surprisingly, siRNA-mediated knockdown of SNAPIN in Jurkat cells was sufficient to overcome any restriction in viral egress imposed by the deletion of Vpu. Conversely, siRNA targeting Bst-2 had little or no effect on viral titers in Jurkat cells regardless of whether it was transfected alone or in combination with siRNAs targeting SNAPIN.
These experiments provide evidence of an alternate cellular restriction mechanism involved in viral egress that is countered by the HIV-1 accessory protein, Vpu. In addition, this research may provide further insight into the complex cellular networks involved in the trafficking of Gag through cellular endosomal pathways.
Identifer | oai:union.ndltd.org:umassmed.edu/oai:escholarship.umassmed.edu:gsbs_diss-1461 |
Date | 05 April 2010 |
Creators | Younan, Patrick |
Publisher | eScholarship@UMassChan |
Source Sets | University of Massachusetts Medical School |
Detected Language | English |
Type | text |
Format | application/pdf |
Source | Morningside Graduate School of Biomedical Sciences Dissertations and Theses |
Rights | Copyright is held by the author, with all rights reserved., select |
Page generated in 0.0026 seconds