Return to search

New-Geometrical-Structure Traveling-Wave Electroabsorption Modulator by Wet Etching

Abstract
In this thesis, we propose a new geometrical structure of waveguide for the application of traveling-wave electroabsorption modulator (TWEAM). As approaching to high-speed performance in TWEAM, low parasitic capacitance in the waveguide is necessary to get good microwave propagation properties. In this work, a novel processing called two-step undercut-etching the active region (UEAR) is developed to reduce the parasitic capacitance.
First of all, Beam Propagation Method (BPM) is used to calculate this 2-D structure optical modes ensuring the guiding capability in such kind of waveguides. Based on an equivalent circuit model, the microwave propagation on different structures of waveguide is then investigated to decide the UEAR waveguide structure.
By the selectively etching solution on InP/InGaAsP, the processing by two-step UEAR is developed to reduce the parasitic capacitance in the waveguide core. H3PO4:HCl is used to selectively etch P-InP layer on the top of InGaAsP M.Q.W. (multiple quantum wells, active region). H3PO4:H2O2:H2O is subsequently and selectively remove InGaAsP M.Q.W.s to define the waveguide core.
This processing has been successfully developed. The electrical transmission measurement on this kind of TWEAM shows low reflection S11 of < -17.5dB and a low insertion loss S21 of < ¡V2.7dB from D.C. to 40GHz, indicating high microwave performance on such two-step UEAR waveguide can be achieved due to the low parasitic capacitance.

Identiferoai:union.ndltd.org:NSYSU/oai:NSYSU:etd-0625105-152032
Date25 June 2005
CreatorsTai, Chih-Yu
ContributorsSan-Liang Lee, Mei-Ying Chang, An-Kuo Chu, Wei Lin, Yi-Jen Chiu
PublisherNSYSU
Source SetsNSYSU Electronic Thesis and Dissertation Archive
LanguageCholon
Detected LanguageEnglish
Typetext
Formatapplication/pdf
Sourcehttp://etd.lib.nsysu.edu.tw/ETD-db/ETD-search/view_etd?URN=etd-0625105-152032
Rightsnot_available, Copyright information available at source archive

Page generated in 0.0019 seconds