One of my previous works introduced a new data mining technique to analyze multiple experiments called TAME: Trained Across Multiple Experiments. TAME detects treatment effects of a randomized controlled experiment by utilizing data from outside of the experiment of interest. TAME with linear regression showed promising result; in all simulated scenarios, TAME was at least as good as a standard method, ANOVA, and was significantly better than ANOVA in certain scenarios. In this work, I further investigated and improved TAME by altering how TAME assembles data and creates subject models. I found that mean-centering “prior� data and treating each experiment as equally important allow TAME to detect treatment effects better. In addition, we did not find Random Forest to be compatible with TAME.
Identifer | oai:union.ndltd.org:wpi.edu/oai:digitalcommons.wpi.edu:etd-theses-1791 |
Date | 08 May 2017 |
Creators | Patikorn, Thanaporn |
Contributors | Neil T. Heffernan, Advisor, Jacob R. Whitehill, Reader, |
Publisher | Digital WPI |
Source Sets | Worcester Polytechnic Institute |
Detected Language | English |
Type | text |
Format | application/pdf |
Source | Masters Theses (All Theses, All Years) |
Page generated in 0.0018 seconds