Return to search

Forme normale tournante des tresses

Une tresse est une classe d'équivalence de mots de tresse. Diverses formes normales sur les tresses ont été décrites dans la littérature, c'est-à-dire, divers moyens de sélection, pour toute tresse, d'un mot de tresse distingué la représentant. Définie de façon naturelle sur les monoïdes de tresses de Birman-Ko-Lee (ou duaux), la forme normale tournante peut être étendue au groupe de tresses tout entier. Ici, nous donnons des contraintes de nature combinatoire satisfaites par cette nouvelle forme normale. Nous en obtenons ainsi une caractérisation et montrons que l'ensemble des formes normales tournantes des tresses duales constitue un langage régulier.<br /><br />Un résultat de P. Dehornoy (1992) affirme que toute tresse non triviale admet un représentant sigma-défini. Ce résultat est à la base de la construction de l'ordre des tresses. A l'aide de la forme normale tournante et de ses propriétés, nous montrons que toute tresse admet un représentant sigma-défini de longueur quasi-géodésique, ce qui résout une question ouverte depuis une quinzaine d'années. <br /><br />Un résultat de R. Laver montre que les monoïdes de Birman-Ko-Lee munis de l'ordre des tresses sont bien ordonnés mais laisse ouvert la détermination de leurs longueurs.<br />A l'aide de la forme normale tournante, nous obtenons une caractérisation de l'ordre des tresses sur le monoïde de Birman-ko-Lee à n brins à partir de sa restriction sur celui à (n-1) brins. Une conséquence de ce résultat est une nouvelle démonstration du résultat de R. Laver ainsi que la détermination de la longueur des monoïdes de tresses duaux munis de l'ordre des tresses.

Identiferoai:union.ndltd.org:CCSD/oai:tel.archives-ouvertes.fr:tel-00422099
Date30 June 2009
CreatorsFromentin, Jean
PublisherUniversité de Caen
Source SetsCCSD theses-EN-ligne, France
LanguageFrench
Detected LanguageFrench
TypePhD thesis

Page generated in 0.0052 seconds