We use an algebraic method to model the molecular collision dynamics of a collinear triatomic system. Beginning with a forced oscillator, we develop a mathematical framework upon which inelastic and reactive collisions are modeled. The model is considered algebraic because it takes advantage of the properties of a Lie algebra in the derivation of a time-evolution operator. The time-evolution operator is shown to generate both phase-space and quantum dynamics of a forced oscillator simultaneously. The model is considered semi-classical because only the molecule's internal degrees-of-freedom are quantized. The relative translation between the colliding atom and molecule in an exchange reaction (AB+C ->A+BC) contains no bound states and any possible tunneling is neglected so the relative translation is treated classically. The purpose of this dissertation is to develop a working model for the quantum dynamics of a collinear reactive collision. After a reliable model is developed we apply statistical mechanics principles by averaging collisions with molecules in a thermal bath. The initial Boltzmann distribution is of the oscillator energies. The relative velocities of the colliding particles is considered a thermal average. Results are shown of quantum transition probabilities around the transition state that are highly dynamic due to the coupling between the translational and transverse coordinate.
Identifer | oai:union.ndltd.org:BGMYU2/oai:scholarsarchive.byu.edu:etd-6754 |
Date | 01 December 2014 |
Creators | Wendler, Tim Glenn |
Publisher | BYU ScholarsArchive |
Source Sets | Brigham Young University |
Detected Language | English |
Type | text |
Format | application/pdf |
Source | Theses and Dissertations |
Rights | http://lib.byu.edu/about/copyright/ |
Page generated in 0.0014 seconds