• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • No language data
  • Tagged with
  • 2
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
1

The Born-Oppenheimer Approximation for Triatomic Molecules with Large Angular Momentum in Two Dimensions

Bowman, Adam Shoresworth 12 January 2011 (has links)
We study the Born-Oppenheimer approximation for a symmetric linear triatomic molecule in two space dimensions. We compute energy levels up to errors of order ε⁵, uniformly for three bounded vibrational quantum numbers n₁, n₂, and n₃; and nuclear angular momentum quantum numbers â ≤ kε<sup>-3/4</sup> for k > 0. Here the small parameter ε is the fourth root of the ratio of the electron mass to an average nuclear mass. / Master of Science
2

Algebraic Semi-Classical Model for Reaction Dynamics

Wendler, Tim Glenn 01 December 2014 (has links) (PDF)
We use an algebraic method to model the molecular collision dynamics of a collinear triatomic system. Beginning with a forced oscillator, we develop a mathematical framework upon which inelastic and reactive collisions are modeled. The model is considered algebraic because it takes advantage of the properties of a Lie algebra in the derivation of a time-evolution operator. The time-evolution operator is shown to generate both phase-space and quantum dynamics of a forced oscillator simultaneously. The model is considered semi-classical because only the molecule's internal degrees-of-freedom are quantized. The relative translation between the colliding atom and molecule in an exchange reaction (AB+C ->A+BC) contains no bound states and any possible tunneling is neglected so the relative translation is treated classically. The purpose of this dissertation is to develop a working model for the quantum dynamics of a collinear reactive collision. After a reliable model is developed we apply statistical mechanics principles by averaging collisions with molecules in a thermal bath. The initial Boltzmann distribution is of the oscillator energies. The relative velocities of the colliding particles is considered a thermal average. Results are shown of quantum transition probabilities around the transition state that are highly dynamic due to the coupling between the translational and transverse coordinate.

Page generated in 0.034 seconds