The aim of this study was to increase the understanding of the mechanisms regulating cell proliferation and recombinant protein production in serum-free cultures of Trichoplusia ni (T. ni) insect cells. Conditioned medium (CM) was shown to contain both stimulatory and inhibitory factors (CM factors) influencing cell growth. Metalloproteinase (MP) activity was the major factor responsible for the growth stimulating effect of CM as shown by using the specific MP inhibitor DL-thiorphan. MPs may exist in several different molecular mass forms due to autoproteolysis. Although the main band of the MP was determined to be around 48 kDa, precursor forms above 48 kDa as well as autocatalytic degradation products below the main band could be observed. It is not clear whether all forms of the MP or just the main band is involved in the growth regulation. Further, a proteinase inhibitor could be identified in the inhibitory fraction. Thus, we speculate that the proteinase inhibitor may be part of an autocrine system regulating cell proliferation. Analysis of the cell cycle phase distribution revealed a high proportion of cells in the G1 (80-90 %) and a low proportion of cells in the S and G2/M phases (10-20 %) during the whole culture, indicating that S and G2/M are short relative to G1. After inoculation, a drastic decrease in the S phase population together with a simultaneous increase of cells in G1 and G2/M could be observed as a lagphase on the growth curve and this may be interpreted as a temporary replication stop. When the cells were released from the initial arrest, the S phase population gradually increased again. This was initiated earlier in CM-supplemented cultures, and agrees with the earlier increase in cell concentration. Thus, these data suggests a correlation between CM factors and the cell cycle dynamics. In cultures supplied with CM, a clear positive effect on specific productivity was observed, with a 30 % increase in per cell productivity. The specific productivity was also maintained at a high level much longer time than in fresh-medium cultures. The positive effect observed after 20 h coincided with the time a stimulatory effect on cell growth first was seen. Thus, the productivity may be determined by the proliferation potential of the culture. A consequence of this would be that the secreted MP indirectly affects productivity. Finally, the yeast extract from Express Five SFM contains factors up to 35 kDa which are essential for T. ni cell growth. The optimal concentration was determined to be 2.5-fold that in normal medium, while higher concentrations were inhibitory. However although vital, they were not solely responsible for the growth-enhancing effect, as some other, more general, component present in yeast extract was needed for proliferation as well. / <p>QC 20101129</p>
Identifer | oai:union.ndltd.org:UPSALLA1/oai:DiVA.org:kth-191 |
Date | January 2005 |
Creators | Eriksson, Ulrika |
Publisher | KTH, Skolan för bioteknologi (BIO), Stockholm : KTH |
Source Sets | DiVA Archive at Upsalla University |
Language | English |
Detected Language | English |
Type | Licentiate thesis, comprehensive summary, info:eu-repo/semantics/masterThesis, text |
Format | application/pdf |
Rights | info:eu-repo/semantics/openAccess |
Page generated in 0.0019 seconds