Return to search

Modelling and control of an articulated underground mining vehicle

The automation of the tramming or load, haul and dump (LHD) procedure, performed by a LHD vehicle, holds the potential to improve productivity, efficiency and safety in the mining environment. Productivity is mainly increased by longer working hours; efficiency is improved by repetitive, faultless and predictable work; and safety is improved by removing the human operator from the harsh environment. However, before the automation of the process can be addressed, a thorough understanding of the process and its duty in the overall mining method is required. Therefore, the current applicable mining methods and their areas of potential automation are given. Since the automation of the LHD vehicle is at the core of this project, its implementation in the tramming process is also justified. Also, the current underground navigation methods are given and their shortcomings are named. It is concluded that infrastructure-free navigation is the only viable solution in the ever-changing mining environment. With that in mind, the feasibility of various navigation sensors is discussed and conclusions are drawn. Both kinematic and dynamic modelling of LHD vehicles are introduced. Various forms of kinematic models are given and their underlying modelling assumptions are named. The most prominent assumptions concern the vehicle’s half-length and the inclusion of a wheel-slip factor. Dynamic modelling techniques, with a strong emphasis on tyre modelling, are also stated. In order to evaluate the modelling techniques, field tests are performed on the articulated vehicles, namely the Wright 365 LHD and the Bell 1706C loader. The test on the Wright 365 LHD gives a good impression of the harsh ergonomics under which the operator has to work. A more thorough test is performed on the Bell 1706C articulated loader. The test results are then compared to simulation results obtained from the kinematic models. Also, the above-named assumptions are tested, evaluated and discussed. A dynamic model is also simulated and discussed. Lastly, two localization and control methods are given and evaluated. The first method is an open-loop nonlinear optimal control strategy with periodic position resetting and the second method is a pathtracking controller. AFRIKAANS : Automatisering van die laai-, vervoer- en dompel- (LVD) prosedure het die potensiaal om die produktiwiteit, effektiwiteit en veiligheid van die mynbedryf te verbeter. Produktiwiteit word hoofsaaklik deur langer werksure verhoog, effektiwiteit word deur herhalende, foutlose en voorspelbare werk verbeter en veiligheid word verbeter omdat menslike operateurs uit die gevaarlike ondergrondse omgewing verwyder word. Voordat aandag aan die automatisering van die prosedure geskenk kan word, moet die prosedure en die algemene mynbedrywighede rakende die prosedure deeglik bestudeer en verstaan word. As gevolg hiervan word die huidige, toepaslike mynboumetodes hier gedokumenteer. Die implementering van ʼn gekoppelde LVD-voertuig in die LVD-prosesword ook geregverdig. Verder word die huidige metodes van ondergrondse navigasie genoem en hulle tekortkominge aangedui. Die gevolgtrekking dat infrastruktuur-vrye navigasie die enigste lewensvatbare navigasiemetode in die immer veranderende ondergrondsemynbouomgewing is, word ook gemaak. In die lig daarvan word ʼn verskeidenheid sensors genoem en bespreek. Kinematiese en dinamiese modellering van ʼn LVD-voertuig word bekendgestel. Verskeie kinematiese modelle en hulle onderliggende aannames word genoem. Die mees prominente aannames is die lengte van die gekoppelde voertuig se hoofdele en die insluiting van ʼn wielglipfaktor. Die tegnieke van dinamiese modellering, met die klem op bandmodellering, word ook gegee. Praktyktoetse op gekoppelde voertuie is ook gedoen om die verskillende modelle te evalueer. Die toets op die Wright 365-LVD bied goeie insig in die strawwe ergonomiese toestande waaronder die operateurs moet werk. ʼn Deeglike toets is op ʼn BELL 1706C- gekoppelde laaier, wat kinematies identies aan ʼn LVD-voertuig is, uitgevoer. Die bevindinge van die toets word met bogenoemde modelsimulasies vergelyk en gevolgtrekkings word gemaak. Laastens word lokalisiering en beheer van ʼn LVDvoertuig behandel. Twee beheermetodes, opelus- nie-lineêre optimale beheer met periodieke herstel en padvolgingbeheer word geëvalueer en bespreek. Copyright / Dissertation (MEng)--University of Pretoria, 2012. / Electrical, Electronic and Computer Engineering / unrestricted

Identiferoai:union.ndltd.org:netd.ac.za/oai:union.ndltd.org:up/oai:repository.up.ac.za:2263/26245
Date12 July 2012
CreatorsKohlmeyer, Rolf Reimar
ContributorsDr F R Camisani-Calzolari, Prof I K Craig, rolfk2@gmail.com
Source SetsSouth African National ETD Portal
Detected LanguageUnknown
TypeDissertation
Rights© 2011, University of Pretoria. All rights reserved. The copyright in this work vests in the University of Pretoria. No part of this work may be reproduced or transmitted in any form or by any means, without the prior written permission of the University of Pretoria

Page generated in 0.0026 seconds