Return to search

CFD MODELLING OF TWO-PHASE FLOWS AT SPILLWAY AERATORS

Due to the high-speed flow in a chute spillway, cavitation damages often occur. This undesired phenomenon threatens the safety of the structure. For the purpose of eliminating the damages, an aerator is often installed in the spillway. To understand its characteristics, physical model tests are a popular method. To complement the model tests, computation fluid dynamics (CFD) simulations are used to study aerator flows. To represent the two-phase flows, multiphase models should be employed. This thesis examines two of them, namely, the Volume-Of-Fluid model (VOF) and Two-Fluid model. Based on the background of the Bergeforsen dam, the aerator flow is modelled by means of the VOF model. The simulated spillway discharge capacity is in accordance with the experimental data. Compared with the results, empirical formulas fail to evaluate the air supply capacity of aerator as it is wider than the conventional width. A hypothetical vent modification is proposed. For the original and proposed layouts, the study illustrates the difference in the air-flow conditions. The results show that a larger vent area is, for a large-width aerator, preferable in the middle of the chute. To study the flip bucket-shaped aerators in the Gallejaur dam, physical model tests and prototype observations are conducted. The results lead to contradicting conclusions in terms of jet breakup and air entrainment. A CFD model is, as an option, employed to explain the reason of the discrepancy. The numerical results coincide with the prototype observations. The jet breakup and air entrainment are evaluated from air cavity profiles; the air-pressure drops are small in the cavity. The discrepancy is due to overestimation of the surface-tension effect in the physical model tests. Based on the experimental data of an aerator rig at the Laboratory of Hydraulics, Hydrology and Glaciology (VAW), ETH Zurich, the Two-Fluid model is used to predict air concentration distributions in the aerated flow. The model includes relevant forces governing the motion of bubbles and considers the effects of air bubble size. The numerical results are conformable to the experiments in the air cavity zone. Downstream of the cavity, the air concentration near the chute bottom is higher, which is presumably caused by the fact that the interfacial forces in the Two-Fluid model are underestimated. / <p>QC 20170224</p>

Identiferoai:union.ndltd.org:UPSALLA1/oai:DiVA.org:kth-202392
Date January 2017
CreatorsTeng, Penghua
PublisherKTH, Vattendragsteknik, Stockholm : KTH
Source SetsDiVA Archive at Upsalla University
LanguageEnglish
Detected LanguageEnglish
TypeLicentiate thesis, comprehensive summary, info:eu-repo/semantics/masterThesis, text
Formatapplication/pdf
Rightsinfo:eu-repo/semantics/openAccess
RelationTRITA-HYD ; 2017:02

Page generated in 0.0024 seconds