Two-photon absorption is the process in which a molecule absorbs two photons simultaneously. The two key advantages of two-photon processes over one-photon processes are the possibility of excitation of materials with high three-dimensional spatial resolution and deep light-penetration into absorbing materials. Based on bond-cleavage reactions activated by photon-induced intramolecular electron transfer, two-photon activatable acid and radical initiators and two-photon removable protecting groups have been successfully designed and synthesized for photopolymerization and three-dimensional microfabrication and for biomedical photo-triggers. The optical and chemical properties of synthesized molecules, such as quantum yield of acid generation, initiation efficiency of photopolymerization, and photolysis efficiency, have been studied by using a variety of physical and analytical techniques under one-photon conditions. The two-photon characteristics and applications of these molecules are being investigated in collaboration with other groups.
Identifer | oai:union.ndltd.org:arizona.edu/oai:arizona.openrepository.com:10150/195094 |
Date | January 2007 |
Creators | Wang, Jing |
Contributors | Marder, Seth R., McGrath, Dominic V., Marder, Seth R., McGrath, Dominic V., Armstrong, Neal R., Hruby, Victor J., Saavedra, S. Scott |
Publisher | The University of Arizona. |
Source Sets | University of Arizona |
Language | English |
Detected Language | English |
Type | text, Electronic Dissertation |
Rights | Copyright © is held by the author. Digital access to this material is made possible by the University Libraries, University of Arizona. Further transmission, reproduction or presentation (such as public display or performance) of protected items is prohibited except with permission of the author. |
Page generated in 0.0019 seconds