The number concentration and size distribution of particles in Brisbane have been studied extensively by the researchers at The International Laboratory for Air Quality and Health, Queensland University of Technology (Morawska et al., 1998, 1999a, 1999b). However, the comprehensive studies of chemical compositions of atmospheric particles, especially with regard to the two main classes of pollutants (polycyclic aromatic hydrocarbons and trace elements), that are usually of environmental and health interest, have not been fully undertaken. Therefore, this thesis presents detailed information on polycyclic aromatic hydrocarbons (PAHs) and elemental compositions of vehicle exhausts and of urban air in Brisbane. The levels of polycyclic aromatic hydrocarbons (PAHs) and elements in three of Brisbane's urban sites (Queensland University of Technology, Woolloongabba and ANZ stadium sites) were measured. The most common PAHs found in all sites were naphthalene, phenanthrene, anthracene, fluoranthene, pyrene and chrysene while Al, Cd, Co, Cr, Cu, Fe, Mn, Mo, Si, Sn, Sr and Zn were the most common elements detected in the total suspended particles and fine particle (PM2.5). With the aid of multivariate analysis techniques, several outcomes were obtained. For example: -- Major human activities such as vehicular and industrial sources were the most contributing pollution sources in Brisbane. However, these two sources have different influential strength on the compositions of the polycyclic aromatic hydrocarbons and trace inorganic elements found in the urban air. -- Woolloongabba bus platform was the most polluted site on the basis of the elemental and PAH compositions in its air samples while QUT site was the worst polluted site in terms of PM2.5 elemental contents. These results demonstrated that the impact of traffic related pollutants on Brisbane's urban air is significant. This led to the investigations of the direct emissions of pollutants from exhaust vehicular source in the second part of this research work. The exhaust studies included the investigations of PAHs, trace inorganic elements and particles. At the time of the study, the majority of vehicles in Brisbane used low sulfur diesel (LSD) fuel or unleaded petrol (ULP). However, the importance of vehicles using ultra low sulfur diesel (ULSD) and liquefied petroleum gas (LPG) is constantly growing. Therefore, the exhaust emission studies on chassis dynamometer from heavy duty non-catalyst-equipped buses powered by LSD and ULSD with 500 ppm and 50 ppm sulfur contents respectively as well as passenger cars powered by ULP and LPG were explored. The outcomes of such studies are summarized as follows: -- Naphthalene, acenaphthene, acenaphthylene, anthracene, phenanthrene, fluorene, fluoranthene and pyrene were frequently emitted by the buses powered by LSD and ULSD. However, buses powered by ULSD emitted 91% less PAHs than those powered by LSD. On the other hand, Mg, Ca, Cr, Fe, Cu, Zn, Ti, Ni, Pb, Be, P, Se, Ti and Ge were found in measurable quantities in the exhaust of the buses. The emissions of the elements were found to be strongly influenced by the engine driving conditions of the buses and fuel parameters such as sulfur content, fuel density and cetane index. -- Naphthalene, fluorene, phenanthrene, anthracene, pyrene, chrysene, benzo(a)anthracene and benzo(b)fluoranthene were predominantly emitted by ULP and LPG cars. On the average, the total emission factors of PAHs from LPG cars were generally lower than those of ULP cars, but given the large variations in the emission factors of cars powered by the same type of fuel, differences in the emission factors from both car types were statistically insignificant. In general, platinum group elements and many other elements were found in the exhausts of cars powered by both fuels. Emissions of inorganic elements from the cars were dependent on the type and the mileage of the cars. For example, ULP cars generally emitted higher levels of Cu, Mg, Al and Zn while LPG cars emitted higher level of V. In addition, cars with higher mileages were associated with higher emissions of the major elements (Zn, Al, Fe, V and Cu). -- Buses powered by ULSD usually emitted fewer particles, which were generally 31% to 59% lower than those emitted by LSD powered buses. Similarly, cars powered by LPG emitted less particles from those powered by ULP fuel. However, more nanoparticles (those with aerodynamic diameters of less than 50 nm) were emitted by LPG powered cars than their ULP counterparts. Health effect assessment of the exhaust PAHs was evaluated in terms of benzo(a)pyrene toxicity equivalent (BAPeq). The potential toxicities of PAHs emitted by ULSD powered buses were generally lower than those emitted by their LSD counterparts. A similar trend with lower emissions of PAHs from LPG cars than from ULP cars was observed when otherwise identical passenger cars were powered by LPG and ULP fuels. In summary, this thesis has shown that the majority of airborne particles found around Brisbane have anthropogenic origins, particularly vehicle emissions, and that fuel or lubricant formulations and engine operating conditions play important roles in the physical and chemical characteristics of pollutants emitted by vehicles. The implications of these results on worldwide strategies to reduce the environmental and health effects of particles emitted by motor vehicles were discussed. In this regard, direct emission measurements from vehicles powered by LSD, ULSD, ULP and LPG unveiled the relative environmental benefits associated with the use of ULSD in place of LSD to power diesel engines, and of LPG in place of ULP to power passenger cars.
Identifer | oai:union.ndltd.org:ADTP/265420 |
Date | January 2007 |
Creators | Lim, McKenzie C. H. |
Publisher | Queensland University of Technology |
Source Sets | Australiasian Digital Theses Program |
Detected Language | English |
Rights | Copyright McKenzie C. H. Lim |
Page generated in 0.0019 seconds