1 |
Process simulation, integration and optimization of blending of petrodiesel with biodieselWang, Ting 15 May 2009 (has links)
With the increasing stringency on sulfur content in petrodiesel, there is a growing
tendency of broader usage of ultra low sulfur diesel (ULSD) with sulfur content of 15
ppm. Refineries around the world should develop cost-effective and sustainable
strategies to meet these requirements. The primary objective of this work is to analyze
alternatives for producing ULSD. In addition to the conventional approach of revamping
existing hydrotreating facilities, the option of blending petrodiesel with biodiesel is
investigated. Blending petrodiesel with biodiesel is a potentially attractive option
because it is naturally low in sulfur, enhances the lubricity of petrodiesel, and is a
sustainable energy resource.
In order to investigate alternatives for producing ULSD, several research tasks were
undertaken in this work. Firstly, base-case designs of petrodiesel and biodiesel
production processes were developed using computer-aided tools ASPEN Plus. The
simulations were adjusted until the technical criteria and specifications of petrodiesel
and biodiesel production were met. Next, process integration techniques were employed
to optimize the synthesized processes. Heat integration for petrodiesel and biodiesel was
carried out using algebraic, graphical and optimization methods to maximize the
integrated heat exchange and minimize the heating and cooling utilities. Additionally,
mass integration was applied to conserve material resources. Cost estimation was carried
out for both processes. The capital investments were obtained from ASPEN ICARUS
Process Evaluator, while operating costs were calculated based on the updated chemical
market prices. The total operating costs before and after process integration were calculated and compared. Next, blending optimization was performed for three blending
options with the optimum blend for each option identified. Economic comparison (total
annualized cost, breakeven analysis, return on investment, and payback period) of the
three options indicated that the blending of ULSD with chemical additives was the most
profitable. However, the subsequent life-cycle greenhouse gas (GHG) emission and
safety comparisons demonstrated that the blending of ULSD with biodiesel was
superior.
|
2 |
Analysis of Fuel Performance and Exhaust Emissions of Ultra-low Sulphur Diesel Blending with BiofuelsChen, Kung-Fu 17 February 2005 (has links)
This study investigated the fuel properties, engine performances, and emissions of two biodiesels and diesel. The fuels examined were D100 (ultra-low sulfur diesel), B20 (20% palm biodiesel +80% ultra-low sulfur diesel) and B100 (palm biodiesel).
The fuel properties analysis results showed that the benefits of biodiesel were high cetane value, extremely low sulfur and aromatic contents, and good lubricity. While the defects of biodiesel were high pour point. The particulates emitted from the burning of D100, B100, B20 were mainly fine particulates, also known as young aerosols. Particles smaller than 2.5 µm easily enter the trachea and bronchus via the upper respiratory tract, finally deposit on the alveolus, which could cause severe injury to human health.
The emission of soluble organic fraction (SOF) from diesel engine using D100, B100 and B20 were 23.2%, 19.9% and 20.2%, respectively. The SOF of D100 is slightly higher than B100 and B20. It suggested that adding biodiesel into diesel can decrease SOF and thus reduce the potential danger to human health.
The original total PAHs concentration of tail gas emitted from engines using D100, B100 and B20 were 241, 50.6 and 98.8 µg/m3, respectively. Adding 20% biodiesel into D100 could reduce 59.0% of PAHs emission. Moreover, the original total BaPeq concentration of tail gas emitted from diesel engines using D100, B100 and B20 were 0.714, 0.509 and 0.570 µg/m3, respectively. Adding 20% biodiesel into D100 could also reduce 20.2% of total BaPeq emission. Hence, adding biodiesel into diesel can effectively reduce the emission of PAHs and the potential danger to human health.
The emission factors of carbonyl compounds from diesel engines using D100, B100 and B20 were 395, 1,170 and 326 mg/BHP-hr, respectively. carbonyl compounds of B100 were obviously higher than D100 and B20. The results indicated that using pure palm biodiesel in diesel engine can increased the emission of carbonyl compounds. However, adding 20% biodiesel into D100 can effectively reduce 17.5% of carbonyl compounds emission.
Keyword: ultra-low sulfur diesel, palm biodiesel, fuel properties¡BThe emission of soluble organic fraction (SOF)¡BPAHs¡Bcarbonyl compounds¡C
|
3 |
Chemical and physical characterization of aerosols from the exhaust emissions of motor vehiclesLim, McKenzie C. H. January 2007 (has links)
The number concentration and size distribution of particles in Brisbane have been studied extensively by the researchers at The International Laboratory for Air Quality and Health, Queensland University of Technology (Morawska et al., 1998, 1999a, 1999b). However, the comprehensive studies of chemical compositions of atmospheric particles, especially with regard to the two main classes of pollutants (polycyclic aromatic hydrocarbons and trace elements), that are usually of environmental and health interest, have not been fully undertaken. Therefore, this thesis presents detailed information on polycyclic aromatic hydrocarbons (PAHs) and elemental compositions of vehicle exhausts and of urban air in Brisbane. The levels of polycyclic aromatic hydrocarbons (PAHs) and elements in three of Brisbane's urban sites (Queensland University of Technology, Woolloongabba and ANZ stadium sites) were measured. The most common PAHs found in all sites were naphthalene, phenanthrene, anthracene, fluoranthene, pyrene and chrysene while Al, Cd, Co, Cr, Cu, Fe, Mn, Mo, Si, Sn, Sr and Zn were the most common elements detected in the total suspended particles and fine particle (PM2.5). With the aid of multivariate analysis techniques, several outcomes were obtained. For example: -- Major human activities such as vehicular and industrial sources were the most contributing pollution sources in Brisbane. However, these two sources have different influential strength on the compositions of the polycyclic aromatic hydrocarbons and trace inorganic elements found in the urban air. -- Woolloongabba bus platform was the most polluted site on the basis of the elemental and PAH compositions in its air samples while QUT site was the worst polluted site in terms of PM2.5 elemental contents. These results demonstrated that the impact of traffic related pollutants on Brisbane's urban air is significant. This led to the investigations of the direct emissions of pollutants from exhaust vehicular source in the second part of this research work. The exhaust studies included the investigations of PAHs, trace inorganic elements and particles. At the time of the study, the majority of vehicles in Brisbane used low sulfur diesel (LSD) fuel or unleaded petrol (ULP). However, the importance of vehicles using ultra low sulfur diesel (ULSD) and liquefied petroleum gas (LPG) is constantly growing. Therefore, the exhaust emission studies on chassis dynamometer from heavy duty non-catalyst-equipped buses powered by LSD and ULSD with 500 ppm and 50 ppm sulfur contents respectively as well as passenger cars powered by ULP and LPG were explored. The outcomes of such studies are summarized as follows: -- Naphthalene, acenaphthene, acenaphthylene, anthracene, phenanthrene, fluorene, fluoranthene and pyrene were frequently emitted by the buses powered by LSD and ULSD. However, buses powered by ULSD emitted 91% less PAHs than those powered by LSD. On the other hand, Mg, Ca, Cr, Fe, Cu, Zn, Ti, Ni, Pb, Be, P, Se, Ti and Ge were found in measurable quantities in the exhaust of the buses. The emissions of the elements were found to be strongly influenced by the engine driving conditions of the buses and fuel parameters such as sulfur content, fuel density and cetane index. -- Naphthalene, fluorene, phenanthrene, anthracene, pyrene, chrysene, benzo(a)anthracene and benzo(b)fluoranthene were predominantly emitted by ULP and LPG cars. On the average, the total emission factors of PAHs from LPG cars were generally lower than those of ULP cars, but given the large variations in the emission factors of cars powered by the same type of fuel, differences in the emission factors from both car types were statistically insignificant. In general, platinum group elements and many other elements were found in the exhausts of cars powered by both fuels. Emissions of inorganic elements from the cars were dependent on the type and the mileage of the cars. For example, ULP cars generally emitted higher levels of Cu, Mg, Al and Zn while LPG cars emitted higher level of V. In addition, cars with higher mileages were associated with higher emissions of the major elements (Zn, Al, Fe, V and Cu). -- Buses powered by ULSD usually emitted fewer particles, which were generally 31% to 59% lower than those emitted by LSD powered buses. Similarly, cars powered by LPG emitted less particles from those powered by ULP fuel. However, more nanoparticles (those with aerodynamic diameters of less than 50 nm) were emitted by LPG powered cars than their ULP counterparts. Health effect assessment of the exhaust PAHs was evaluated in terms of benzo(a)pyrene toxicity equivalent (BAPeq). The potential toxicities of PAHs emitted by ULSD powered buses were generally lower than those emitted by their LSD counterparts. A similar trend with lower emissions of PAHs from LPG cars than from ULP cars was observed when otherwise identical passenger cars were powered by LPG and ULP fuels. In summary, this thesis has shown that the majority of airborne particles found around Brisbane have anthropogenic origins, particularly vehicle emissions, and that fuel or lubricant formulations and engine operating conditions play important roles in the physical and chemical characteristics of pollutants emitted by vehicles. The implications of these results on worldwide strategies to reduce the environmental and health effects of particles emitted by motor vehicles were discussed. In this regard, direct emission measurements from vehicles powered by LSD, ULSD, ULP and LPG unveiled the relative environmental benefits associated with the use of ULSD in place of LSD to power diesel engines, and of LPG in place of ULP to power passenger cars.
|
4 |
Exhaust Emissions Analysis for Ultra Low Sulfur Diesel and Biodiesel Garbage TrucksGarimella, Venkata Naga Ravikanth January 2010 (has links)
No description available.
|
5 |
An Analysis on Vehicular Exhaust Emissions from Transit Buses Running on Biodiesel BlendsVinay Kumar, Nerella V. 14 June 2010 (has links)
No description available.
|
Page generated in 0.0675 seconds