Return to search

Estudando plasmas não-Abelianos fortemente acoplados usando a dualidade gauge/gravity / Understanding strongly coupled non-Abelian plasmas using the gauge/gravity duality

O estudo de teorias de calibre não-Abelianas fortemente acopladas, em especial de aspectos térmicos e fora do equilíbrio, é um problema central para a compreensão da Cromodinâmica Quântica (Quantum Chromodynamics - QCD) - em particular, para entender a evolução do Plasma de Quarks e Glúons (Quark-Gluon Plasma- QGP). A técnica mais promissora, QCD na rede, obteve sucesso ao tratar de fenômenos no vácuo e em equilíbrio térmico, como espectros e termodinâmica, mas enfrenta desafios consideráveis ao lidar com fenômenos fora do equilíbrio. Uma ferramenta adaptada para lidar com problemas envolvendo plasmas fortemente acoplados em tempo real é a dualidade gauge/gravity, que mapeia uma Teoria Quântica de Campos (Quantum Field Theory - QFT) fortemente acoplada em d dimensões em uma teoria de gravitação em d + 1 dimensões, a qual, de modo geral, é mais fácil de ser resolvida. Nesta tese, estudamos diversas aplicações da dualidade gauge/gravity em teorias não-Abelianas fortemente acopladas que modelam qualitativamente o QGP. Nós estudamos o cálculo holográfico do potencial entre um par quark-antiquark pesado (QQ) para dipolos QQ estáticos e se movendo com relação ao plasma, apresentando um formalismo geral para o cálculo da parte real e imaginária para uma grande classe de teorias gravitacionais duais. Um estudo da massa de Debye holográfica, baseado no maior comprimento de correlação de operadores ímpares por transformações de CT, foi empreendido, com aplicações em modelos bottom-up que reproduzem a termodinâmica da teoria de Yang-Mills SU(Nc) pura e da QCD. Para estes modelos, também calculamos vários coeficientes de transporte associados com o transporte de cargas no plasma, como a condutitividade elétrica, a constante de difusão de carga e coeficientes de transporte associados a uma teoria de hidrodinâmica relativística de segunda ordem. / The study of strongly coupled non-Abelian gauge theories, especially concerning their thermal and non-equilibrium aspects, is a central problem for understanding Quantum Chromodynamics (QCD) - in particular, to understand the evolution of the Quark-Gluon Plasma (QGP). The most successful approach, lattice QCD, succeeds in dealing with vacuum and equilibrium phenomena, such as spectra and thermodynamics, but faces a considerable challenge when it comes to with non-equilibrium phenomena. A tool adapted to deal with real time problems in strongly coupled plasmas is the gauge/gravity, which maps a strongly coupled d dimensional Quantum Field Theory (QFT) to a d + 1 dimensional theory of gravity, which, in general, is easier to solve. In this thesis, we study several applications of the gauge/gravity duality to strongly coupled non-Abelian theories which model qualitatively the QGP. We deal with the holographic evaluation of the heavy quark-antiquark (Q Q) potential for static and moving QQ dipoles, presenting a general formalism for the computation of the real and imaginary parts for a large class of dual theories of gravity. A study of the holographic Debye mass, based on the largest screening length of CT-odd operators, is pursued, with applications on bottom-up holographic models that reproduce the thermodynamics of pure SU(Nc) Yang-Mills theory and QCD. For these models, we also compute several transport coefficients associated with charge transport in the plasma, such as the electric conductivity, the charge diffusion constant, and transport coefficients associated with a theory of second order relativistic hydrodynamics.

Identiferoai:union.ndltd.org:usp.br/oai:teses.usp.br:tde-07042015-144444
Date02 March 2015
CreatorsFinazzo, Stefano Ivo
ContributorsNoronha Junior, Jorge Jose Leite
PublisherBiblioteca Digitais de Teses e Dissertações da USP
Source SetsUniversidade de São Paulo
LanguagePortuguese
Detected LanguageEnglish
TypeTese de Doutorado
Formatapplication/pdf
RightsLiberar o conteúdo para acesso público.

Page generated in 0.0024 seconds