Return to search

Efficient high-dimensional filtering for image and video processing

Filtragem é uma das mais importantes operações em processamento de imagens e vídeos. Em particular, filtros de altas dimensões são ferramentas fundamentais para diversas aplicações, tendo recebido recentemente significativa atenção de pesquisadores da área. Infelizmente, implementações ingênuas desta importante classe de filtros são demasiadamente lentas para muitos usos práticos, especialmente tendo em vista o aumento contínuo na resolução de imagens capturadas digitalmente. Esta dissertação descreve três novas abordagens para filtragem eficiente em altas dimensões: a domain transform, os adaptive manifolds, e uma formulação matemática para a aplicação de filtros recursivos em sinais amostrados não-uniformemente. A domain transform, representa o estado-da-arte em termos de algoritmos para filtragem utilizando métrica geodésica. A inovação desta abordagem é a utilização de um procedimento simples de redução de dimensionalidade para implementar eficientemente filtros de alta dimensão. Isto nos permite a primeira demonstração de filtragem com preservação de arestas em tempo real para vídeos coloridos de alta resolução (full HD). Os adaptive manifolds, representam o estado-da-arte em termos de algoritmos para filtragem utilizando métrica Euclidiana. A inovação desta abordagem é a ideia de subdividir o espaço de alta dimensão em fatias não-lineares de mais baixa dimensão, as quais são filtradas independentemente e finalmente interpoladas para obter uma filtragem de alta dimensão com métrica Euclidiana. Com isto obtemos diversos avanços em relação a técnicas anteriores, como filtragem mais rápida e requerendo menos memória, além da derivação do primeiro filtro Euclidiano com custo linear tanto no número de pixels da imagem (ou vídeo) quanto na dimensionalidade do espaço onde o filtro está operando. Finalmente, introduzimos uma formulação matemática que descreve a aplicação de um filtro recursivo em sinais amostrados de maneira não-uniforme. Esta formulação estende a ideia de filtragem geodésica para filtros recursivos arbitrários (tanto passa-baixa quanto passa-alta e passa-banda). Esta extensão fornece maior controle sobre as respostas desejadas para os filtros, as quais podem então ser melhor adaptadas para aplicações específicas. Como exemplo, demonstramos—pela primeira vez na literatura—filtros geodésicos com formato Gaussiano, Laplaciana do Gaussiano, Butterworth, e Cauer, dentre outros. Com a possibilidade de se trabalhar com filtros arbitrários, nosso método permite uma nova variedade de efeitos para aplicações em imagens e vídeos. / Filtering is arguably the single most important operation in image and video processing. In particular, high-dimensional filters are a fundamental building block for several applications, having recently received considerable attention from the research community. Unfortunately, naive implementations of such an important class of filters are too slow for many practical uses, specially in light of the ever increasing resolution of digitally captured images. This dissertation describes three novel approaches to efficiently perform high-dimensional filtering: the domain transform, the adaptive manifolds, and a mathematical formulation for recursive filtering of non-uniformly sampled signals. The domain transform defines an isometry between curves on the 2D image manifold in 5D and the real line. It preserves the geodesic distance between points on these curves, adaptively warping the input signal so that high-dimensional geodesic filtering can be efficiently performed in linear time. Its computational cost is not affected by the choice of the filter parameters; and the resulting filters are the first to work on color images at arbitrary scales in real time, without resorting to subsampling or quantization. The adaptive manifolds compute the filter’s response at a reduced set of sampling points, and use these for interpolation at all input pixels, so that high-dimensional Euclidean filtering can be efficiently performed in linear time. We show that for a proper choice of sampling points, the total cost of the filtering operation is linear both in the number of pixels and in the dimension of the space in which the filter operates. As such, ours is the first high-dimensional filter with such a complexity. We present formal derivations for the equations that define our filter, providing a sound theoretical justification. Finally, we introduce a mathematical formulation for linear-time recursive filtering of non-uniformly sampled signals. This formulation enables, for the first time, geodesic edge-aware evaluation of arbitrary recursive infinite impulse response filters (not only low-pass), which allows practically unlimited control over the shape of the filtering kernel. By providing the ability to experiment with the design and composition of new digital filters, our method has the potential do enable a greater variety of image and video effects. The high-dimensional filters we propose provide the fastest performance (both on CPU and GPU) for a variety of real-world applications. Thus, our filters are a valuable tool for the image and video processing, computer graphics, computer vision, and computational photography communities.

Identiferoai:union.ndltd.org:IBICT/oai:www.lume.ufrgs.br:10183/118258
Date January 2015
CreatorsGastal, Eduardo Simões Lopes
ContributorsOliveira Neto, Manuel Menezes de
Source SetsIBICT Brazilian ETDs
LanguageEnglish
Detected LanguageEnglish
Typeinfo:eu-repo/semantics/publishedVersion, info:eu-repo/semantics/doctoralThesis
Formatapplication/pdf
Sourcereponame:Biblioteca Digital de Teses e Dissertações da UFRGS, instname:Universidade Federal do Rio Grande do Sul, instacron:UFRGS
Rightsinfo:eu-repo/semantics/openAccess

Page generated in 0.0028 seconds