Skolfastigheter is a municipality owned real estate company that manages most of the buildings used for lower education in Uppsala. The company is working in line with the environmental goals of the municipality by installing photovoltaic systems in schools and other educational buildings. Skolfastigheter are planning to install a photovoltaic system in a school in Stenhagen. The purpose of this study is to optimally design the proposed system. The system will be maximized, which in this study entails that the modules will be placed on every part of the roof where the insolation is sufficient. The system will also be grid connected. The design process includes finding an optimal placement of the modules, matching them with a suitable inverter bank and evaluating the potential of a battery storage. Economic aspects such as taxes, subsidies and electricity prices are taken into account when the system is simulated and analyzed. A sensitivity analysis is carried out to evaluate how the capacity of a battery bank affects the self-consumption, self-sufficiency and cost of the system. It is concluded that the optimal system has a total peak power of almost 600 kW and a net present value of 826 TSEK, meaning that it would be a profitable investment. A battery bank is excluded from the optimal design, since increasing the capacity of the bank steadily decreased the net present value and only marginally increased the self-consumption and self-sufficiency of the system.
Identifer | oai:union.ndltd.org:UPSALLA1/oai:DiVA.org:uu-384723 |
Date | January 2019 |
Creators | Kristofersson, Filip, Elfberg, Sara |
Publisher | Uppsala universitet, Institutionen för teknikvetenskaper, Uppsala universitet, Institutionen för teknikvetenskaper |
Source Sets | DiVA Archive at Upsalla University |
Language | English |
Detected Language | English |
Type | Student thesis, info:eu-repo/semantics/bachelorThesis, text |
Format | application/pdf |
Rights | info:eu-repo/semantics/openAccess |
Relation | TVE-STS ; 19007 |
Page generated in 0.0022 seconds