Evaluer, maintenir et restaurer les conditions écologiques des rivières nécessitent des mesures du fonctionnement de leurs écosystèmes. De par leur complexité, notre compréhension de ces systèmes est imparfaite. La prise en compte des incertitudes et variabilités liées à leur évaluation est donc indispensable à la prise de décision des gestionnaires. En analysant des données nationales (~ 1654 sites), les objectifs principaux de cette thèse étaient de (1) tester certaines hypothèses intrinsèques aux bio-indicateurs et (2) d'étudier les incertitudes de l'évaluation écologique associées à la variabilité temporelle des bio-indicateurs et à la prédiction des conditions de référence. (1) Ce travail met en évidence (i) le rôle prépondérant des facteurs environnementaux naturels dans la structuration des communautés aquatiques en comparaison des facteurs anthropiques (définis à l'échelle du bassin versant, du corridor riparien et du tronçon), (ii) les réponses contrastées des communautés aquatiques aux pressions humaines (dégradations hydro-morphologiques et de la qualité de l'eau) et (iii) plus généralement, les forts impacts des barrages et de l'altération de la qualité de l'eau sur les communautés aquatiques. (2) Une méthode Bayésienne a été développée pour estimer les incertitudes liées à la prédiction des conditions de référence d'un indice piscicole (IPR+). Les incertitudes prédictives de l'IPR+ dépendent du site considéré mais aucune tendance claire n'a été observée. Par comparaison, la variabilité temporelle de l'IPR+ est plus faible et semble augmenter avec l'intensité des perturbations anthropiques. Les résultats de ce travail confirment l'avantage d'indices multi-métriques basés sur des traits fonctionnels par rapport à ceux relatifs à la composition taxonomique. Les sensibilités différentes des macrophytes, poissons, diatomées et macro-invertébrés aux pressions humaines soulignent leur complémentarité pour l'évaluation des écosystèmes fluviaux. Néanmoins, de futures recherches sont nécessaires à une meilleure compréhension des effets d'interactions entre types de pressions et entre pressions humaines et environnement. / Sensitive biological measures of ecosystem quality are needed to assess, maintain or restore the ecological conditions of rivers. Since our understanding of these complex systems is imperfect, river management requires recognizing variability and uncertainty of bio-assessment for decision-making. Based on the analysis of national data sets (~ 1654 sites), the main goals of this work were (1) to test some of the assumptions that shape bio-indicators and (2) address the temporal variability and the uncertainty associated to prediction of reference conditions.(1) This thesis highlights (i) the predominant role of physiographic factors in shaping biological communities in comparison to human pressures (defined at catchment, riparian corridor and reach scales), (ii) the differences in the responses of biological indicators to the different types of human pressures (water quality, hydrological, morphological degradations) and (iii) more generally, the greatest biological impacts of water quality alterations and impoundments. (2) A Bayesian method was developed to estimate the uncertainty associated with reference condition predictions of a fish-based bio-indicator (IPR+). IPR+ predictive uncertainty was site-dependent but showed no clear trend related to the environmental gradient. By comparison, IPR+ temporal variability was lower and sensitive to an increase of human pressure intensity. This work confirmed the advantages of multi-metric indexes based on functional metrics in comparison to compositional metrics. The different sensitivities of macrophytes, fish, diatoms and macroinvertebrates to human pressures emphasize their complementarity in assessing river ecosystems. Nevertheless, future research is needed to better understand the effects of interactions between pressures and between pressures and the environment.
Identifer | oai:union.ndltd.org:theses.fr/2013AGPT0002 |
Date | 11 January 2013 |
Creators | Marzin, Anahita |
Contributors | Paris, AgroParisTech, Pont, Didier |
Source Sets | Dépôt national des thèses électroniques françaises |
Language | English |
Detected Language | French |
Type | Electronic Thesis or Dissertation, Text |
Page generated in 0.0026 seconds