Return to search

Suivi multi-locuteurs avec information audio-visuel pour la perception du robot / audio-visual multiple-speaker tracking for robot perception

La perception des robots joue un rôle crucial dans l’interaction homme-robot (HRI). Le système de perception fournit les informations au robot sur l’environnement, ce qui permet au robot de réagir en consequence. Dans un scénario de conversation, un groupe de personnes peut discuter devant le robot et se déplacer librement. Dans de telles situations, les robots sont censés comprendre où sont les gens, ceux qui parlent et de quoi ils parlent. Cette thèse se concentre sur les deux premières questions, à savoir le suivi et la diarisation des locuteurs. Nous utilisons différentes modalités du système de perception du robot pour remplir cet objectif. Comme pour l’humain, l’ouie et la vue sont essentielles pour un robot dans un scénario de conversation. Les progrès de la vision par ordinateur et du traitement audio de la dernière décennie ont révolutionné les capacités de perception des robots. Dans cette thèse, nous développons les contributions suivantes : nous développons d’abord un cadre variationnel bayésien pour suivre plusieurs objets. Le cadre bayésien variationnel fournit des solutions explicites, rendant le processus de suivi très efficace. Cette approche est d’abord appliqué au suivi visuel de plusieurs personnes. Les processus de créations et de destructions sont en adéquation avec le modèle probabiliste proposé pour traiter un nombre variable de personnes. De plus, nous exploitons la complémentarité de la vision et des informations du moteur du robot : d’une part, le mouvement actif du robot peut être intégré au système de suivi visuel pour le stabiliser ; d’autre part, les informations visuelles peuvent être utilisées pour effectuer l’asservissement du moteur. Par la suite, les informations audio et visuelles sont combinées dans le modèle variationnel, pour lisser les trajectoires et déduire le statut acoustique d’une personne : parlant ou silencieux. Pour expérimenter un scenario où l’information visuelle est absente, nous essayons le modèle pour la localisation et le suivi des locuteurs basé sur l’information acoustique uniquement. Les techniques de déréverbération sont d’abord appliquées, dont le résultat est fourni au système de suivi. Enfin, une variante du modèle de suivi des locuteurs basée sur la distribution de von-Mises est proposée, celle-ci étant plus adaptée aux données directionnelles. Toutes les méthodes proposées sont validées sur des bases de données specifiques à chaque application. / Robot perception plays a crucial role in human-robot interaction (HRI). Perception system provides the robot information of the surroundings and enables the robot to give feedbacks. In a conversational scenario, a group of people may chat in front of the robot and move freely. In such situations, robots are expected to understand where are the people, who are speaking, or what are they talking about. This thesis concentrates on answering the first two questions, namely speaker tracking and diarization. We use different modalities of the robot’s perception system to achieve the goal. Like seeing and hearing for a human-being, audio and visual information are the critical cues for a robot in a conversational scenario. The advancement of computer vision and audio processing of the last decade has revolutionized the robot perception abilities. In this thesis, we have the following contributions: we first develop a variational Bayesian framework for tracking multiple objects. The variational Bayesian framework gives closed-form tractable problem solutions, which makes the tracking process efficient. The framework is first applied to visual multiple-person tracking. Birth and death process are built jointly with the framework to deal with the varying number of the people in the scene. Furthermore, we exploit the complementarity of vision and robot motorinformation. On the one hand, the robot’s active motion can be integrated into the visual tracking system to stabilize the tracking. On the other hand, visual information can be used to perform motor servoing. Moreover, audio and visual information are then combined in the variational framework, to estimate the smooth trajectories of speaking people, and to infer the acoustic status of a person- speaking or silent. In addition, we employ the model to acoustic-only speaker localization and tracking. Online dereverberation techniques are first applied then followed by the tracking system. Finally, a variant of the acoustic speaker tracking model based on von-Mises distribution is proposed, which is specifically adapted to directional data. All the proposed methods are validated on datasets according to applications.

Identiferoai:union.ndltd.org:theses.fr/2019GREAM017
Date10 May 2019
CreatorsBan, Yutong
ContributorsGrenoble Alpes, Horaud, Radu, Alameda-Pineda, Xavier
Source SetsDépôt national des thèses électroniques françaises
LanguageEnglish
Detected LanguageFrench
TypeElectronic Thesis or Dissertation, Text

Page generated in 0.002 seconds