This thesis treats the modelling of a high-dimensional data set of longitudinal binary responses. The data consists of default indicators from different nations around the world as well as some explanatory variables such as exposure to underlying assets. The data used for the modelling is an aggregated term which combines several of the default indicators in the data set into one. The modelling sets out from a portfolio perspective and seeks to find underlying correlations between the nations in the data set as well as see the extreme values produced by a portfolio with assets in the nations in the data set. The modelling takes a copula approach which uses Gaussian copulas to first formulate several different models mathematically and then optimize the parameters in the models to best fit the data set. Models A and B are optimized using standard stochastic gradient ascent on the likelihood function while model C uses variational inference and stochastic gradient ascent on the evidence lower bound for optimization. Using the different Gaussian copulas obtained from the optimization process a portfolio simulation is then done to examine the extreme values. The results show low correlations in models A and B while model C with it's additional regional correlations show slightly higher correlations in three of the subgroups. The portfolio simulations show similar tail behaviour in all three models, however model C produces more extreme risk measure outcomes in the form of higher VaR and ES. / Denna uppsats behandlar modellering av en datauppsättning bestående av högdimensionell longitudinell binärrespons. Datan består av konkursindikatorer för ett flertal suveräna stater runtom världen samt förklarande variabler så som exponering mot underliggande tillgångar. Datan som används i modelleringen är en aggregerad term som slår samman flera av konkursindikatorerna till en term. Modellerandet tar ett portföljperspektiv och försöker att finna underliggande korrelationer mellan nationerna i datamängden så väl som extremförluster som kan komma från en portfölj med tillgångar i de olika länderna som innefattas av datamängden. Utgångspunkten för modellerandet är ett copula-perspektiv som använder Gaussiska copulas där man först försöker matematiskt formulera flertalet modeller för att sedan optimera parametrarna i dessa modeller för att bäst passa datamängden till hands. För modell A och modell B optimeras log-likelihoodfunktionen med hjälp av stochastic gradient ascent medan i modell C används variational inference och sedan optimeras evidence lower bound med hjälp av stochastic gradient ascent. Med hjälp av de anpassade copula-modellerna simuleras sedan olika portföljer för att se vilka extremvärden som kan antas. Resultaten visar små korrelationer i modell A och B medan i modell C, med dess ytterligare regionala korrelationer, visas något större korrelation i tre av undergrupperna. Portföljsimuleringarna visar liknande svansbeteende i alla tre modeller, men modell C ger upphov till större riskmåttvärden i portföljerna i form av högre VaR och ES.
Identifer | oai:union.ndltd.org:UPSALLA1/oai:DiVA.org:kth-337128 |
Date | January 2022 |
Creators | Henningsson, Nils |
Publisher | KTH, Matematik (Avd.) |
Source Sets | DiVA Archive at Upsalla University |
Language | English |
Detected Language | Swedish |
Type | Student thesis, info:eu-repo/semantics/bachelorThesis, text |
Format | application/pdf |
Rights | info:eu-repo/semantics/openAccess |
Relation | TRITA-SCI-GRU ; 2022:373 |
Page generated in 0.0014 seconds