As a first aspect the thesis treats existence results of the perturbed eigenvalue problem of the 1-Laplace operator. This is done with the aid of a quite general critical point theory results with the genus as topological index. Moreover we show that the eigenvalues of the perturbed 1-Laplace operator converge to the eigenvalues of the unperturebed 1-Laplace operator when the perturbation goes to zero. As a second aspect we treat the eigenvalue problems of the vectorial 1-Laplace operator and the symmetrized 1-Laplace operator. And as a third aspect certain related parabolic problems are considered.
Identifer | oai:union.ndltd.org:DRESDEN/oai:qucosa:de:qucosa:28551 |
Date | 23 January 2015 |
Creators | Littig, Samuel |
Contributors | Schuricht, Friedemann, Kristensen, Jan, Technische Universität Dresden |
Source Sets | Hochschulschriftenserver (HSSS) der SLUB Dresden |
Language | English |
Detected Language | English |
Type | doc-type:doctoralThesis, info:eu-repo/semantics/doctoralThesis, doc-type:Text |
Rights | info:eu-repo/semantics/openAccess |
Page generated in 0.0016 seconds