The 4th Symposium on Management of Future Motorway and Urban Traffic Systems (MFTS) was held in Dresden, Germany, from November 30th to December 2nd, 2022. Organized by the Chair of Traffic Process Automation (VPA) at the “Friedrich List” Faculty of Transport and Traffic Sciences of the TU Dresden, the proceedings of this conference are published as volume 9 in the Chair’s publication series “Verkehrstelematik” and contain a large part of the presented conference extended abstracts.
The focus of the MFTS conference 2022 was cooperative management of multimodal transport and reflected the vision of the professorship to be an internationally recognized group in ITS research and education with the goal of optimizing the operation of multimodal transport systems.
In 14 MFTS sessions, current topics in demand and traffic management, traffic control in conventional, connected and automated transport, connected and autonomous vehicles, traffic flow modeling and simulation, new and shared mobility systems, digitization, and user behavior and safety were discussed. In addition, special sessions were organized, for example on “Human aspects in traffic modeling and simulation” and “Lesson learned from Covid19 pandemic”, whose descriptions and analyses are also included in these proceedings.:1 Connected and Automated Vehicles
1.1 Traffic-based Control of Truck Platoons on Freeways
1.2 A Lateral Positioning Strategy for Connected and Automated Vehicles in Lane-free Traffic
1.3 Simulation Methods for Mixed Legacy-Autonomous Mainline Train Operations
1.4 Can Dedicated Lanes for Automated Vehicles on Urban Roads Improve Traffic Efficiency?
1.5 GLOSA System with Uncertain Green and Red Signal Phases
2 New Mobility Systems
2.1 A New Model for Electric Vehicle Mobility and Energy Consumption in Urban Traffic Networks
2.2 Shared Autonomous Vehicles Implementation for a Disrupted Public Transport Network
3 Traffic Flow and Simulation
3.1 Multi-vehicle Stochastic Fundamental Diagram Consistent with Transportations Systems Theory
3.2 A RoundD-like Roundabout Scenario in CARLA Simulator
3.3 Multimodal Performance Evaluation of Urban Traffic Control: A Microscopic Simulation Study
3.4 A MILP Framework to Solve the Sustainable System Optimum with Link MFD Functions
3.5 On How Traffic Signals Impact the Fundamental Diagrams of Urban Roads
4 Traffic Control in Conventional Traffic
4.1 Data-driven Methods for Identifying Travel Conditions Based on Traffic and Weather Characteristics
4.2 AI-based Multi-class Traffic Model Oriented to Freeway Traffic Control
4.3 Exploiting Deep Learning and Traffic Models for Freeway Traffic Estimation
4.4 Automatic Design of Optimal Actuated Traffic Signal Control with Transit Signal Priority
4.5 A Deep Reinforcement Learning Approach for Dynamic Traffic Light Control with Transit Signal Priority
4.6 Towards Efficient Incident Detection in Real-time Traffic Management
4.7 Dynamic Cycle Time in Traffic Signal of Cyclic Max-Pressure Control
5 Traffic Control with Autonomous Vehicles
5.1 Distributed Ordering and Optimization for Intersection Management with Connected and Automated Vehicles
5.2 Prioritization of an Automated Shuttle for V2X Public Transport at a Signalized Intersection – a Real-life Demonstration
6 User Behaviour and Safety
6.1 Local Traffic Safety Analyzer (LTSA) - Improved Road Safety and Optimized Signal Control for Future Urban Intersections
7 Demand and Traffic Management
7.1 A Stochastic Programming Method for OD Estimation Using LBSN Check-in Data
7.2 Delineation of Traffic Analysis Zone for Public Transportation OD Matrix Estimation Based on Socio-spatial Practices
8 Workshops
8.1 How to Integrate Human Aspects Into Engineering Science of Transport and Traffic? - a Workshop Report about Discussions on Social Contextualization of Mobility
8.2 Learning from Covid: How Can we Predict Mobility Behaviour in the Face of Disruptive Events? – How to Investigate the Mobility of the Future / Das 4. Symposium zum Management zukünftiger Autobahn- und Stadtverkehrssysteme (MFTS) fand vom 30. November bis 2. Dezember 2022 in Dresden statt und wurde vom Lehrstuhl für Verkehrsprozessautomatisierung (VPA) an der Fakultät Verkehrswissenschaften„Friedrich List“ der TU Dresden organisiert. Der Tagungsband erscheint als Band 9 in der Schriftenreihe „Verkehrstelematik“ des Lehrstuhls und enthält einen Großteil der vorgestellten Extended-Abstracts des Symposiums.
Der Schwerpunkt des MFTS-Symposiums 2022 lag auf dem kooperativen Management multimodalen Verkehrs und spiegelte die Vision der Professur wider, eine international anerkannte Gruppe in der ITS-Forschung und -Ausbildung mit dem Ziel der Optimierung des Betriebs multimodaler Transportsysteme zu sein.
In 14 MFTS-Sitzungen wurden aktuelle Themen aus den Bereichen Nachfrage- und Verkehrsmanagement, Verkehrssteuerung im konventionellen, vernetzten und automatisierten Verkehr, vernetzte und autonome Fahrzeuge, Verkehrsflussmodellierung und -simulation, neue und geteilte Mobilitätssysteme, Digitalisierung sowie Nutzerverhalten und Sicherheit diskutiert. Darüber hinaus wurden Sondersitzungen organisiert, beispielsweise zu „Menschlichen Aspekten bei der Verkehrsmodellierung und -simulation“ und „Lektionen aus der Covid-19-Pandemie“, deren Beschreibungen und Analysen ebenfalls in diesen Tagungsband einfließen.:1 Connected and Automated Vehicles
1.1 Traffic-based Control of Truck Platoons on Freeways
1.2 A Lateral Positioning Strategy for Connected and Automated Vehicles in Lane-free Traffic
1.3 Simulation Methods for Mixed Legacy-Autonomous Mainline Train Operations
1.4 Can Dedicated Lanes for Automated Vehicles on Urban Roads Improve Traffic Efficiency?
1.5 GLOSA System with Uncertain Green and Red Signal Phases
2 New Mobility Systems
2.1 A New Model for Electric Vehicle Mobility and Energy Consumption in Urban Traffic Networks
2.2 Shared Autonomous Vehicles Implementation for a Disrupted Public Transport Network
3 Traffic Flow and Simulation
3.1 Multi-vehicle Stochastic Fundamental Diagram Consistent with Transportations Systems Theory
3.2 A RoundD-like Roundabout Scenario in CARLA Simulator
3.3 Multimodal Performance Evaluation of Urban Traffic Control: A Microscopic Simulation Study
3.4 A MILP Framework to Solve the Sustainable System Optimum with Link MFD Functions
3.5 On How Traffic Signals Impact the Fundamental Diagrams of Urban Roads
4 Traffic Control in Conventional Traffic
4.1 Data-driven Methods for Identifying Travel Conditions Based on Traffic and Weather Characteristics
4.2 AI-based Multi-class Traffic Model Oriented to Freeway Traffic Control
4.3 Exploiting Deep Learning and Traffic Models for Freeway Traffic Estimation
4.4 Automatic Design of Optimal Actuated Traffic Signal Control with Transit Signal Priority
4.5 A Deep Reinforcement Learning Approach for Dynamic Traffic Light Control with Transit Signal Priority
4.6 Towards Efficient Incident Detection in Real-time Traffic Management
4.7 Dynamic Cycle Time in Traffic Signal of Cyclic Max-Pressure Control
5 Traffic Control with Autonomous Vehicles
5.1 Distributed Ordering and Optimization for Intersection Management with Connected and Automated Vehicles
5.2 Prioritization of an Automated Shuttle for V2X Public Transport at a Signalized Intersection – a Real-life Demonstration
6 User Behaviour and Safety
6.1 Local Traffic Safety Analyzer (LTSA) - Improved Road Safety and Optimized Signal Control for Future Urban Intersections
7 Demand and Traffic Management
7.1 A Stochastic Programming Method for OD Estimation Using LBSN Check-in Data
7.2 Delineation of Traffic Analysis Zone for Public Transportation OD Matrix Estimation Based on Socio-spatial Practices
8 Workshops
8.1 How to Integrate Human Aspects Into Engineering Science of Transport and Traffic? - a Workshop Report about Discussions on Social Contextualization of Mobility
8.2 Learning from Covid: How Can we Predict Mobility Behaviour in the Face of Disruptive Events? – How to Investigate the Mobility of the Future
Identifer | oai:union.ndltd.org:DRESDEN/oai:qucosa:de:qucosa:85819 |
Date | 13 June 2023 |
Creators | Wang, Meng, Jaekel, Birgit, Lehnert, Martin, Zhou, Runhao, Li, Zirui |
Contributors | Technische Universität Dresden |
Publisher | TUDpress |
Source Sets | Hochschulschriftenserver (HSSS) der SLUB Dresden |
Language | English |
Detected Language | English |
Type | info:eu-repo/semantics/publishedVersion, doc-type:conferenceObject, info:eu-repo/semantics/conferenceObject, doc-type:Collection |
Rights | info:eu-repo/semantics/openAccess |
Relation | urn:nbn:de:bsz:14-qucosa2-339052, qucosa:33905 |
Page generated in 0.0029 seconds