Em analise de dados que apresentam certo grau de assimetria a suposicao que as observações seguem uma distribuição normal, pode resultar ser uma suposição irreal e a aplicação deste modelo pode ocultar características importantes do modelo verdadeiro. Este tipo de situação deu forca á aplicação de modelo assimétricos, destacando-se entre estes a família de distribuições skew-symmetric, desenvolvida por Azzalini (1985). Neste trabalho nos apresentamos uma segunda proposta para a anàlise de dados com presença importante de assimetria e/ou curtose, comparado com a distribuição normal. Nós apresentamos e estudamos algumas propriedades dos modelos alfa-potência e log-alfa-potência, onde também estudamos o problema de estimação, as matrizes de informação observada e esperada de Fisher e o grau do viés dos estimadores mediante alguns processos de simulação. Nós introduzimos um modelo mais estável que o modelo alfa- potência do qual derivamos o caso bimodal desta distribuição e introduzimos os modelos bimodal simêtrico e assimêtrico alfa-potencia. Posteriormente nós estendemos a distribuição alfa-potência para o caso do modelo Birnbaum-Saunders, estudamos as propriedades deste novo modelo, desenvolvemos estimadores para os parametros e propomos estimadores com viés corrigido. Também introduzimos o modelo de regressão alfa-potência para dados censurados e não censurados e para o modelo de regressão log-linear Birnbaum-Saunders; aqui nós derivamos os estimadores dos parâmetros e estudamos algumas técnicas de validação dos modelos. Por ultimo nós fazemos a extensão multivariada do modelo alfa-potência e estudamos alguns processos de estimação dos parâmetros. Para todos os casos estudados apresentam-se ilustrações com dados já analisados previamente com outras suposições de distribuições. / In data analysis where data present certain degree of asymmetry the assunption of normality can result in an unreal situation and the application of this model can hide important caracteristics of the true model. Situations of this type has given strength to the use of asymmetric models with special emphasis on the skew-symmetric distribution developed by Azzalini (1985). In this work we present an alternative for data analysis in the presence of signi¯cant asymmetry or kurtosis, when compared with the normal distribution, as well as other situations that involve such model. We present and study of the properties of the ®-power and log-®-power distributions, where we also study the estimation problem, the observed and expected information matrices and the degree of bias in estimation using simulation procedures. A °exible model version is proposed for the ®-power distribution, following an extension to a bimodal version. Follows next an extension of the Birnbaum-Saunders distribution using the ®-power distribution, where some properties are studied, estimating approaches are developed as well as corrected bias estimator developed. We also develop censored and uncensored regression for the ®-power model and for the log-linear Birnbaum-Saunders regression models, for which model validation techniques are studied. Finally a multivariate extension of the ®-power model is proposed and some estimation procedures are investigated for the model. All the situations investigated were illustrated with data application using data sets previally analysed with other distributions.
Identifer | oai:union.ndltd.org:IBICT/oai:teses.usp.br:tde-07072011-154259 |
Date | 22 June 2011 |
Creators | Guillermo Domingo Martinez Florez |
Contributors | Heleno Bolfarine, Héctor Wladimir Gomez Geraldo, Victor Hugo Lachos Davila, Filidor Edilfonso Vilca Labra, Gilberto Alvarenga Paula, Hugo Segundo Salinas Pérez |
Publisher | Universidade de São Paulo, Estatística, USP, BR |
Source Sets | IBICT Brazilian ETDs |
Language | Portuguese |
Detected Language | English |
Type | info:eu-repo/semantics/publishedVersion, info:eu-repo/semantics/doctoralThesis |
Source | reponame:Biblioteca Digital de Teses e Dissertações da USP, instname:Universidade de São Paulo, instacron:USP |
Rights | info:eu-repo/semantics/openAccess |
Page generated in 0.0029 seconds