Return to search

Kraftanalys och framtagning av mätanordning för vertikala vindkraftverket Lucias bärarmar

The project contains a force analysis of the vertical axis wind turbine Lucia's supporting arms and a measuring device to experimentally measure the forces is made. The forces between the supporting arms and the tower are calculated theoretically and then simulated by a computere. A measuring devise is then designed to measure the forces experimentally. The forces acting on the attachment between the supporting arms and the tower is primarily the centripetal force, gravitational force and the aerodynamic forces on the rotor wings. The maximum forces were theoretically calculated and is 13.38 kN along the x-axis, -0.25 kN along the y-axis and then 0.5 kN along the z-axis. The axis are acording to a rotational reference system where the x-axis runs along the supporting arm and the y-axis runs along the axis of rotation. The maximum torque that occurs is 0.53 kNm along the y-axis and 1.29 kNm along the z-axis. The size of the forces have been confirmed with a deviation of up to 1.8 % in the simulation using SolidWorks 2010. For the experimental measurements a measuring device has been developed which consists of S-load cells with wave indicator and transmitter, an attachment for the measuring equipment and distanceplates to stabilize the rotor. S-load cells, wave indicator and transmitter were ordered and drawings for the attachment of the measuring equipment and spacer plates was done. The eigenfrequencies and the stress have been investigated for the parts. The eigenfrequencies for the wind turbine was estimated to decline up to 13 % when the measuring device was mounted and the lowest Factor of Safety was 1.67. Before the attachment of the measuring device and the spacer plates can be ordered the attachment of the supporting arms, how the loadcells should be attached to the device and the safety margins need to be examined.

Identiferoai:union.ndltd.org:UPSALLA1/oai:DiVA.org:uu-159839
Date January 2011
CreatorsHammar, Henning, Constanda, Daniel
PublisherUppsala universitet, Institutionen för teknikvetenskaper, Uppsala universitet, Institutionen för teknikvetenskaper
Source SetsDiVA Archive at Upsalla University
LanguageSwedish
Detected LanguageEnglish
TypeStudent thesis, info:eu-repo/semantics/bachelorThesis, text
Formatapplication/pdf
Rightsinfo:eu-repo/semantics/openAccess
RelationTVE ; 11 0013

Page generated in 0.002 seconds