CAPES, Fundação Casimiro Montenegro Filho / No tratamento do movimento rotacional tridimensional de corpos rígidos é inevitável lidar-se com o fato de que rotações não são quantidades vetoriais. Elas podem, no entanto, ser tratadas como tais quando o ângulo de rotação é (muito) pequeno. Neste contexto, ou seja, o da análise infinitesimal, as derivadas temporais das variáveis de rotação mantêm um relacionamento simples (às vezes mesmo do tipo vetorial) com os componentes do vetor velocidade angular. Convencionalmente, esta distinta característica não pode ser associada a rotações grandes, nem mesmo medianas. Nesta tese é demonstrado que a relação diferencial entre o vetor rotação e o vetor velocidade angular pode, na realidade, ser expressa em termos de uma simples derivada temporal, desde que o ângulo de rotação seja mantido numa faixa moderada. O artifício permitindo tal simplicidade na equação cinemática (cinemática linear de atitude) com um ângulo de rotação moderado é a escolha criteriosa da base a partir da qual a derivada temporal é observada. Este resultado é utilizado vantajosamente em conjunto com uma versão generalizada das equações de movimento de Euler na construção de uma lei de controle simples. Essa lei realiza, concomitantemente, o rastreamento linear nominal de atitude e o rastreamento linear nominal de velocidade angular (rastreamento linear nominal de estado rotacional),
dentro de uma faixa moderada de erro de rastreamento de atitude. O trabalho analítico apresentado é único no sentido em que este combina cinemática rotacional, dinâmica rotacional e controle de forma tal que linearidade nominal entre as variáveis de erro de estado é atingida mesmo para erros moderados de rastreamento de atitude. Pela primeira vez, uma lei de controle permite explicitamente que a dinâmica de erro de estado rotacional em malha fechada seja escolhida e motivada por conceitos físicos úteis da teoria linear de controle. O texto também inclui simulações numéricas que validam e ilustram os resultados teóricos obtidos. / In dealing with rigid body three-dimensional rotational motion, one is inevitably led to face the fact that rotations are not vector quantities. They may, however, be treated as such when the angle of rotation is (very) small. In this context, i.e. the infinitesimal case analysis, the time derivatives of the rotation variables hold simple (sometimes vector-like) relationships to the components of the angular velocity vector. Conventionally, this distinctive characteristic cannot be associated with general moderate-to-large rotations. In this thesis, it is demonstrated that the kinematical differential relationship between the rotation vector and the angular velocity vector may, in fact, be expressed in terms of a mere time derivative, provided that the angle of rotation is kept within moderate bounds. The key to achieve such simplicity in the kinematical equation (linear attitude kinematics) within moderate angles of rotation is a judicious choice of the basis from which the time derivative is observed. This result is used to advantage within a generalised version of Euler’s motion equations to construct a simple control law, which nominally realises both linear attitude tracking and linear angular velocity tracking (nominal linear attitude state tracking), within moderate attitude tracking errors. The analytical work presented here is unique in the sense that it combines attitude kinematics, dynamics and control in such a way that nominal linearity between the attitude state error variables is achieved within moderate attitude tracking errors. For the first time, an attitude control law explicitly enables the nominal closed-loop attitude state error dynamics to be chosen and motivated by useful physical concepts from linear control theory. The text also includes numerical simulations that validate and illustrate the theoretically achieved results.
Identifer | oai:union.ndltd.org:IBICT/oai:repositorio.utfpr.edu.br:1/481 |
Date | 10 1900 |
Creators | Pece, Carlos Alessandro Zanetti |
Contributors | Almeida, Sérgio Francisco Müller de |
Publisher | Instituto Tecnológico de Aeronáutica, Curitiba, Programa de Pós-Graduação em Engenharia Aeronáutica e Mecânica |
Source Sets | IBICT Brazilian ETDs |
Language | English |
Detected Language | Portuguese |
Type | info:eu-repo/semantics/publishedVersion, info:eu-repo/semantics/doctoralThesis |
Source | reponame:Repositório Institucional da UTFPR, instname:Universidade Tecnológica Federal do Paraná, instacron:UTFPR |
Rights | info:eu-repo/semantics/openAccess |
Relation | http://www.bd.bibl.ita.br/tde_busca/arquivo.php?codArquivo=204 |
Page generated in 0.003 seconds