Return to search

Preparação de micropartículas de quitosana incorporadas de nanogéis de poli-(N-vinilcaprolactama-co-ácido itacônico-co-dimetacrilato de etilenoglicol) via secagem por pulverização para liberação controlada de cetoprofeno / Preparation of poly(N-vinylcaprolactam-co-itaconic acid-coethylene glycol dimethacrylate)-based nanogels embedded in chitosan matrix for controlled release of ketoprofen by spray-drying technique

Neste trabalho foram desenvolvidas micropartículas híbridas em pó constituídas de uma matriz biodegradável de quitosana incorporada de partículas de nanogéis biocompatíveis sensíveis à temperatura e/ou ao pH para controlar a liberação de cetoprofeno e aumentar sua solubilidade. Cetoprofeno foi encapsulado em nanopartículas de poli(Nvinilcaprolactama- co-ácido itacônico-co-dimetacrilato de etilenoglicol) (poli(NVCL-co- AI-co-EGDMA)-cetoprofeno), sintetizadas via polimerização por precipitação, as quais foram incorporadas em matriz de quitosana (95% desacetilada e Mv) com os objetivos de melhorar a adesão das micropartículas híbridas no local de liberação e de auxiliar no controle de liberação do fármaco. As micropartículas híbridas de quitosana/poli(NVCL-co-AI-co-EGDMA)-cetoprofeno foram preparadas por interação eletrostática entre os polímeros dispersos em meio aquoso, seguida de secagem por pulverização (spray drying) a fim de melhorar a estabilidadedas micropartículas. Inicialmente foi realizado um estudo sobre a influência das concentrações de monômeros e de iniciador no diâmetro hidrodinâmico (Dh) e na sensibilidade à temperatura e ao pH das partículas de nanogéis. Duas formulações de nanogéis contendo partículas com diferentes valores de Dh (R51 = 185,9 nm e R50 = 120,6 nm) foram utilizadas para a encapsulação de cetoprofeno. As morfologias das partículas de nanogel e das micropartículas híbridas foram avaliadas por microscopias eletrônicas de transmissão e de varredura, respectivamente. Calorimetria diferencial de varredura (DSC), difração de raios X (DRX) e espectroscopia de infravermelho por transformada de Fourier (FTIR) foram utilizadas para analisar as propriedades térmicas, confirmar a encapsulação de cetoprofeno e avaliar qualitativamente a composição dos materiais e interações entre as matrizes poliméricas, respectivamente. Os resultados mostraram que o cetoprofeno foi amorfizado e encapsulado pela matriz de poli(NVCL-co-AI-co-EGDMA), com uma eficiência de encapsulação de 39,6% e 57,8% para as partículas R50 e R51, respectivamente. As matrizes poliméricas de quitosana e de poli(NVCL-co-AI-co-EGDMA) interagiram durante a sua mistura física e durante o processo de secagem, e a cristalinidade da quitosana diminuiu com a incorporação de partículas de nanogel em sua matriz. Os testes de liberação de cetoprofeno in vitro mostraram que as partículas de nanogéis conseguiram controlar a liberação de cetoprofeno e que liberaram 100% do fármaco encapsulado durante 52h de teste, na condição de pH 7,4 e a 37°C. Os testes também evidenciaram que o tamanho das partículas de nanogel foi o parâmetro que mais interferiu na difusão do cetoprofeno pelas partículas, e que a liberação de cetoprofeno foi mais acelerada para as partículas menores (reação R50). Nas mesmas condições de teste, a incorporação das partículas de nanogel na matriz de quitosana causou um retardo na liberação do cetoprofeno, devido à insolubilidade da quitosana no pH 7,4. E os resultados mostraram que para as micropartículas híbridas com maior concentração de partículas de nanogel com relação à massa de quitosana, a liberação de cetoprofeno foi menos acentuada. Isso ocorreu devido ao maior número de interações entre as matrizes poliméricas, o que limitou o contato das partículas de nanogel com o meio de liberação e diminuiu o grau de liberdade de suas cadeias poliméricas. / In this work, powdered hybrid microparticles composed by a chitosan biodegradable matrix embedded with biocompatible and thermo- and pH-responsive particles-based nanogels were developed and used to control the ketoprofen release and to increase its solubility. Ketoprofen was loaded in poly(N-vinylcaprolactam-co-itaconic acid-coethylene glycol dimethacrylate)-based nanogels (poly(NVCL-co-AI-co-EGDMA)- ketoprofen) synthetized by precipitation polymerization, which were embedded in chitosan matrix (95% deacetilation and Mv) aiming to improve the mucoadhesive properties of hybrid microparticles on the targeted tissue and to support in the control of drug release. Hybrid microparticles of chitosan/poly(NVCL-co-AI-co-EGDMA)- ketoprofen were prepared by electrostatic interactions between polymers dispersed in aqueous media and spray-dried in order to improve the microparticles stability. First, it was carried out a study about the influence of monomers and initiator concentrations in the size (hydrodynamic diameter) and thermo- and pH-responsiveness properties of particles-based nanogels. Two formulations of nanogels with different particle sizes (R51 = 185.9 nm e R50 = 120.6 nm) were used to encapsulate ketoprofen. The morphology of particles-based nanogels and hybrid microparticles was studied by transmission and scanning electron microscopies, respectively. Differential scanning calorimetry (DSC), X-ray diffraction (XRD) and Fourier transform infrared spectroscopy (FTIR) were used to study thermal properties, to confirm encapsulation of ketoprofen and qualitatively evaluate the composition of materials and interactions between polymeric matrices, respectively. The results showed that ketoprofen was converted from the crystalline to the amorphous state and was encapsulated by poly(NVCL-co-AI-co-EGDMA) matrix, with an encapsulation efficiency of 39.6% and 57.8%, for particles R50 and R51, respectively. Polymeric matrices of chitosan and poly(NVCL-co-AI-co-EGDMA) interacted during their mixture and drying process, and chitosan crystallinity decreased as a result of the incorporation of particles-based nanogels in their matrix. In vitro release tests of ketoprofen showed that poly(NVCL-co-AI-co-EGDMA)-based nanogels controlled the delivery of ketoprofen and 100% of ketoprofen-loaded has been released after 52h of the tests, carried out in pH 7.4 at 37°C. These tests also showed that the particles-based nanogels size was the parameter that most interfered in the ketoprofen diffusion by particles and that the ketoprofen release from smaller particles (R50 reaction) was faster. Under the same conditions, the incorporation of poly(NVCL-co-AI-co-EGDMA)-based nanogels in chitosan matrix slowed the ketoprofen release, due to insolubility of chitosan in the media at pH 7.4. The results showed that hybrid microparticles with a higher concentration of particles-based nanogels, with respect to the mass of chitosan, the release of ketoprofen was less pronounced. It was due to the greater number of interactions between the polymer matrices, which limited the contact of particles-based nanogels with the media of release and reduced the degree of freedom of the polymeric chains.

Identiferoai:union.ndltd.org:IBICT/oai:teses.usp.br:tde-06022017-104753
Date16 September 2016
CreatorsJéssica de Matos Fonseca
ContributorsAmilton Martins dos Santos, Sergio Paulo Campana Filho, Clodoaldo Saron
PublisherUniversidade de São Paulo, Engenharia Química, USP, BR
Source SetsIBICT Brazilian ETDs
LanguagePortuguese
Detected LanguageEnglish
Typeinfo:eu-repo/semantics/publishedVersion, info:eu-repo/semantics/masterThesis
Sourcereponame:Biblioteca Digital de Teses e Dissertações da USP, instname:Universidade de São Paulo, instacron:USP
Rightsinfo:eu-repo/semantics/openAccess

Page generated in 0.0028 seconds