Return to search

Structure and Dynamics of Viral Substrate Recognition and Drug Resistance: A Dissertation

Drug resistance is a major problem in quickly evolving diseases, including the human immunodeficiency (HIV) and hepatitis C viral (HCV) infections. The viral proteases (HIV protease and HCV NS3/4A protease) are primary drug targets. At the molecular level, drug resistance reflects a subtle change in the balance of molecular recognition; the drug resistant protease variants are no longer effectively inhibited by the competitive drug molecules but can process the natural substrates with enough efficiency for viral survival. Therefore, the inhibitors that better mimic the natural substrate binding features should result in more robust inhibitors with flat drug resistance profiles. The native substrates adopt a consensus volume when bound to the enzyme, the substrate envelope. The most severe resistance mutations occur at protease residues that are contacted by the inhibitors outside the substrate envelope. To guide the design of robust inhibitors, we investigate the shared and varied properties of substrates with the protein dynamics taken into account to define the dynamic substrate envelope of both viral proteases. The NS3/4A dynamic substrate envelope is compared with inhibitors to detect the structural and dynamic basis of resistance mutation patterns. Comparative analyses of substrates and inhibitors result in a solid list of structural and dynamic features of substrates that are not shared by inhibitors. This study can help guiding the development of novel inhibitors by paying attention to the subtle differences between the binding properties of substrates versus inhibitors.

Identiferoai:union.ndltd.org:umassmed.edu/oai:escholarship.umassmed.edu:gsbs_diss-1677
Date29 May 2013
CreatorsOzen, Aysegul
PublishereScholarship@UMassChan
Source SetsUniversity of Massachusetts Medical School
Detected LanguageEnglish
Typetext
Formatapplication/pdf
SourceMorningside Graduate School of Biomedical Sciences Dissertations and Theses
RightsCopyright is held by the author, with all rights reserved.

Page generated in 0.0093 seconds