Return to search

TSS e TSB: novos descritores de forma baseados em tensor scale / TSS & TSB: new shape descriptors based on tensor scale

Neste trabalho são apresentados dois novos descritores de forma para tarefas de recuperação de imagens por conteúdo (CBIR) e análise de formas, que são construídos sobre uma extensão do conceito de tensor scale baseada na Transformada de Distância Euclidiana (EDT). Primeiro, o algoritmo de tensor scale é utilizado para extrair informações da forma sobre suas estruturas locais (espessura, orientação e anisotropia) representadas pela maior elipse contida em uma região homogênea centrada em cada pixel da imagem. Nos novos descritores, o limite do intervalo das orientações das elipses do modelo de tensor scale é estendido de 180º para 360º, de forma a melhor discriminar a descrição das estruturas locais. Então, com base em diferentes abordagens de amostragem, visando resumir informações mais relevantes, os novos descritores são construídos. No primeiro descritor proposto, Tensor Scale Sector (TSS), a distribuição das orientações relativas das estruturas locais em setores circulares é utilizada para compor um vetor de características de tamanho fixo, para uma caracterização de formas baseada em região. No segundo descritor, o Tensor Scale Band (TSB), foram considerados histogramas das orientações relativas extraídos de bandas concêntricas, formando também um vetor de características de tamanho fixo, com uma função de distância de tempo linear. Resultados experimentais com diferentes bases de formas (MPEG-7 e MNIST) são apresentados para ilustrar e validar os métodos. TSS demonstra resultados comparáveis aos métodos estado da arte, que geralmente dependem de algoritmos custosos de otimização de correspondências. Já o TSB, com sua função de distância em tempo linear, se demonstra como uma solução adequada para grandes coleções de formas. / In this work, two new shape descriptors are proposed for tasks in Content-Based Image Retrieval (CBIR) and Shape Analysis tasks, which are built upon an extended tensor scale based on the Euclidean Distance Transform (EDT). First, the tensor scale algorithm is applied to extract shape attributes from its local structures (thickness, orientation, and anisotropy) as represented by the largest ellipse within a homogeneous region centered at each image pixel. In the new descriptors, the upper limit of the interval of local orientation of tensor scale ellipses is extended from 180º to 360º, to better discriminate the description of local structures. Then, the new descriptors are built based on different sampling approaches, aiming to summarize the most relevant features. In the first proposed descriptor, Tensor Scale Sector descriptor (TSS), the local distributions of relative orientations within circular sectors are used to compose a fixed-length feature vector, for a region-based shape characterization. For the second method, the Tensor Scale Band (TSB) descriptor, histograms of relative orientations are considered for each circular concentric band, to also compose a fixed-length feature vector, with linear time distance function for matching. Experimental results for different shape datasets (MPEG-7 and MNIST) are presented to illustrate and validate the methods. TSS can achieve high retrieval values comparable to state-of-the-art methods, which usually rely on time-consuming correspondence optimization algorithms, but uses a simpler and faster distance function, while the even faster linear complexity of TSB leads to a suitable solution for very large shape collections.

Identiferoai:union.ndltd.org:IBICT/oai:teses.usp.br:tde-20122017-205014
Date24 October 2017
CreatorsAnderson Meirelles Freitas
ContributorsPaulo Andre Vechiatto de Miranda, Jurandy Gomes de Almeida Junior, Aparecido Nilceu Marana
PublisherUniversidade de São Paulo, Ciência da Computação, USP, BR
Source SetsIBICT Brazilian ETDs
LanguagePortuguese
Detected LanguagePortuguese
Typeinfo:eu-repo/semantics/publishedVersion, info:eu-repo/semantics/masterThesis
Sourcereponame:Biblioteca Digital de Teses e Dissertações da USP, instname:Universidade de São Paulo, instacron:USP
Rightsinfo:eu-repo/semantics/openAccess

Page generated in 0.0021 seconds