<p>Case hardening distortions are a major problem for gear manufacturers. The aim of the current work is to create a simulation model, able to predict how and when case hardening distortions arise. The results presented in this thesis form a basis for such a model.</p><p>Two case hardening steels, with base carbon contents of 0.20 and 0.21 % C were studied using dilatometer experiments. One of them was carburized to 0.36, 0.52 and 0.65 % C in order to investigate the influence of carbon content. Experiments were performed during both isothermal and continuous heating and cooling conditions. The results were used to evaluate phase transformations, heat expansion behaviors and phase transformation strains. The expansion behavior of the material was modeled as a function of temperature, carbon content and phase fractions. The phase transformations to martensite and bainite were modeled, using the Koistinen-Marburger equation and a transformation rate equation based on Austin-Rickett kinetics, respectively. Experiments were simulated using the COMSOL Multiphysics software, to verify the model with respect to martensite and bainite transformations, heat expansion behavior and phase transformation strains.</p>
Identifer | oai:union.ndltd.org:UPSALLA/oai:DiVA.org:kth-11369 |
Date | January 2009 |
Creators | Tehler, Matilda |
Publisher | KTH, Materials Science and Engineering, Stockholm : E-print |
Source Sets | DiVA Archive at Upsalla University |
Language | English |
Detected Language | English |
Type | Licentiate thesis, comprehensive summary, text |
Page generated in 0.0015 seconds