Return to search

Modélisation multidimensionnelle des interactions électrostatiques pointe/diélectrique en microscopie à champ proche / Multidimensional modeling of electrostatic interactions between the tip and dialectric in near field microscopy

Les techniques de microscopie en champ proche se sont fortement diversifiées au cours des dernières années et ne sont plus désormais cantonnées aux seuls laboratoires experts dans le domaine mais sont exploitées plus largement par les spécialistes des matériaux et des 'micro-' ou 'nano-'objets. Pour ce qui concerne les matériaux diélectriques, des techniques dérivées de la microscopie à force atomique -AFM-, telles que la microscopie à force électrostatique -EFM, ou à force de Kelvin -KFM, permettent d'obtenir de nouvelles informations, à l'échelle nanométrique, sur l'état de charge des isolants et sur leur capacité à stocker/dissiper les charges. Cependant, ces techniques ne permettent pas de connaître précisément la répartition spatiale de la charge en latéral et en profondeur dans les matériaux isolants, données indispensables pour une meilleure compréhension des phénomènes de transport et de piégeage de charges. C'est pourquoi, nous nous sommes intéressés aux courbes de forces électrostatiques comme nouvel outil susceptible de permettre la localisation de la charge. L'objectif de la thèse est donc de comprendre le lien entre l'allure de la courbe de force et le positionnement spatial de la charge dans le matériau. Pour ce faire, deux études sont menées en parallèle : une étude expérimentale et une étude par modélisation numérique. Les travaux de recherche sont focalisés principalement sur la partie simulation de la sonde AFM par une modélisation électrostatique des phénomènes physiques en jeu. Un des verrous à lever dans ces travaux est la disparité d'échelle des objets modélisés et le caractère tridimensionnel du système. Dans cet objectif, un modèle mathématique pour l'étude des interactions électrostatiques entre une pointe AFM et la surface d'un matériau diélectrique a été développé en 2D. La discrétisation des équations décrivant le système est basé sur un nouveau schéma numérique du type volumes finis d'ordre élevé obtenu par le principe de la reconstruction polynômiale. Ce premier modèle a permis de comprendre l'influence de la géométrie de la pointe, notamment le rayon de courbure de l'apex et l'angle de demi-ouverture, sur l'aspect qualitatif et quantitatif des courbes de force. Les résultats montrent, par exemple, que plus le rayon de courbure de la pointe est faible plus la courbure de la courbe de force est prononcée. Ces résultats sont conformes à l'expérience. Pour parfaire notre étude sur la géométrie de la pointe, un premier modèle en 3D a été développé à l'aide du logiciel commercial Comsol Multiphysics(r). Plusieurs formes de pointe ont été testées : conique, tétraèdre et pyramidale. Les courbes de forces obtenues par simulation ont été comparées aux données expérimentales permettant ainsi de trouver une forme optimale représentative de la pointe réelle. Un deuxième modèle en 3D basé sur les équations électromécaniques a été développé pour prendre en compte l'effet du bras de levier sur les courbes de force. Les résultats obtenus montrent que le bras de levier ne modifie pas la forme de la courbe de force obtenue par la pointe seule mais rajoute simplement une composante continue sur celle-ci. / The Scanning Probe Microscopy techniques (SPM) are highly diversified and no longer confined to expert laboratories, being widely used by material scientists for "micro" or "nano" applications. The use of Atomic Force Microscopy (AFM), and techniques derived from it, such as Electrostatic Force Microscopy (EFM) or Kelvin Force Microscopy (KFM), provides a considerable advantage allowing the acquisition of new information down to nanoscale, such as the charge state of dielectric materials and their ability to store and dissipate charges. However, these techniques do not allow to precisely know the spatial distribution of the lateral and deep distribution of the space charge in the insulating materials, required for a better understanding of the phenomena of transportation and charge trapping data. For this purpose, we are interested in the electrostatic force distance curve -EFDC- as a new tool to allow the location of the space charge. The aim of the thesis is to understand the relationship between the shape of the force curve and the spatial positioning of the space charge in the material. To do this, two studies were conducted in parallel: an experimental study and a study by numerical modeling. The research work here is focused mainly on the simulation of the AFM probe by electrostatic modeling of physical phenomena. One of the difficult obstacles to do in this work is the taken in account disparity of scale objects modeled and the three-dimensionality of the system. For this purpose, a mathematical model for the study of electrostatic interactions between an AFM tip and the surface of a dielectric material has been developed in 2D. The discretization of equations describing the system is based on a new numerical scheme of high order finite volume method obtained by the principle of polynomial reconstruction operator. This first model was used to understand the influence of the geometry of the tip, including the radius of curvature of the apex and the half-opening angle on the qualitative and quantitative aspects of the force curves. The results show, for example, more than the radius of curvature of the tip is smaller the curvature of the force curve is pronounced.

Identiferoai:union.ndltd.org:theses.fr/2015TOU30366
Date13 May 2015
CreatorsBoularas, Abderrahmane
ContributorsToulouse 3, Teyssedre, Gilbert, Clain, Stéphane
Source SetsDépôt national des thèses électroniques françaises
LanguageFrench
Detected LanguageFrench
TypeElectronic Thesis or Dissertation, Text

Page generated in 0.0039 seconds