Return to search

Coral records of central tropical Pacific sea-surface temperature and salinity variability over the 20th century

Accurate forecasts of future regional temperature and rainfall patterns in many regions largely depend on characterizing anthropogenic trends in tropical Pacific climate. However, strong interannual to decadal-scale tropical Pacific climate variability, combined with sparse spatial and temporal coverage of instrumental climate datasets in this region, have obscured potential anthropogenic climate signals in the tropical Pacific. In this dissertation, I present sea-surface temperature (SST) and salinity proxy records that span over the 20th century using living corals from several islands in the central tropical Pacific. I reconstruct the SST proxy records via coral Sr/Ca, that are combined with coral oxygen isotopic (d18O) records to quantify changes in seawater d18O (hereafter d18Osw) as a proxy for salinity.

Chapter 2 investigates the spatial and temporal character of SST and d18Osw-based salinity trends in the central tropical Pacific from 1972-1998, as revealed by corals from Palmyra (6ºN, 162ºW), Fanning (4ºN, 159ºW) and Christmas (2ºN, 157ºW) Islands. The late 20th century SST proxy records exhibit warming trends that are larger towards the equator, in line with a weakening of equatorial Pacific upwelling over this period. Freshening trends revealed by the salinity proxy records are larger at those sites most affected by the Inter-Tropical Convergence Zone (ITCZ), suggesting a strengthening and/or an equatorward shift of the ITCZ. Taken together, the late 20th century SST and salinity proxy records document warming and freshening trends that are consistent with a trend towards a weakened tropical Pacific zonal SST gradient under continued anthropogenic forcing.

Chapter 3 characterizes the signatures of natural and anthropogenic variability in central tropical Pacific SST and d18Osw-based salinity over the course of 20th century using century-long coral proxy records from Palmyra. On interannual timescales, the SST proxy record from Palmyra tracks El Niño-Southern Oscillation (ENSO) variability. The salinity proxy record tracks eastern Pacific-centered ENSO events but is poorly correlated to central Pacific-centered ENSO events - the result of profound differences in precipitation and ocean advection that occur during the two types of ENSO. On decadal timescales, the coral SST proxy record is significantly correlated to the North Pacific Gyre Oscillation (NPGO), suggesting that strong dynamical links exist between the central tropical Pacific and the North Pacific. The salinity proxy record is significantly correlated to the Pacific Decadal Oscillation (PDO), but poorly correlated to the NPGO, suggesting that, as was the case with ENSO, these two modes of Pacific decadal climate variability have unique impacts on equatorial precipitation and ocean advection. However, the most striking feature of the salinity proxy record is a prominent late 20th century freshening trend that is likely related to anthropogenic climate change. Taken together, the coral data provide key constraints on tropical Pacific climate trends, and when used in combination with model simulations of 21st century climate, can be used to improve projections of regional climate in areas affected by tropical Pacific climate variability.

Identiferoai:union.ndltd.org:GATECH/oai:smartech.gatech.edu:1853/34775
Date07 July 2010
CreatorsNurhati, Intan Suci
PublisherGeorgia Institute of Technology
Source SetsGeorgia Tech Electronic Thesis and Dissertation Archive
Detected LanguageEnglish
TypeDissertation

Page generated in 0.002 seconds