In tundra, phosphorus (P) is an important macronutrient for plants and microorganisms. A major fraction of P exists as organic compounds in the topsoil which can be mineralized to bioavailable inorganic P. Since mineralization is positively related to temperature, climate warming is likely to increase P bioavailability but the extend of these changes may also depend on vegetation cover and soil properties. I assessed organic and inorganic P concentrations across an elevation and vegetation gradient in northern Sweden using one dimensional (1D) solution 31P nuclear magnetic resonance spectroscopy. I hypothesized that concentration of labile soil P will decrease with increasing elevation (decreasing temperature) and that soils with meadow vegetation will contain higher concentrations of labile P than heath soils. Concentration of labile P in the form of Resin-P and polyphosphates decreased with elevation whereas less labile orthophosphate monoesters increased. Across vegetation types, polyphosphates were more abundant in heath and meadow contained higher concentrations of monoesters. The inverse response of Resin-P and monoesters to elevation may be best explained by lowered organic P mineralization in colder climate. High concentrations of polyphosphates at the lowest elevation may indicate an increased presence of fungal communities associated with mountain birch forest. Heath seemed to be more dominated by fungal communities than meadow and higher concentration of monoesters in meadow indicated a higher soil sorption capacity. In a broader view, the results may suggest that a warmer climate increases mineralization of organic P in form of orthophosphate monoesters to more labile P forms. This effect might be enhanced by an upward movement of the tree line and might be more pronounced in heath than meadow soils due to a higher fungal activity.
Identifer | oai:union.ndltd.org:UPSALLA1/oai:DiVA.org:umu-141377 |
Date | January 2017 |
Creators | Krohn, Johannes |
Publisher | Umeå universitet, Institutionen för ekologi, miljö och geovetenskap |
Source Sets | DiVA Archive at Upsalla University |
Language | English |
Detected Language | English |
Type | Student thesis, info:eu-repo/semantics/bachelorThesis, text |
Format | application/pdf |
Rights | info:eu-repo/semantics/openAccess |
Page generated in 0.0027 seconds