This thesis investigates the impedance of acoustic liners, to attenuate noise originating from jet engines and enable compliance with international standards and regulations regarding noise from airplane jet engines. Experimental tests of two supplied liners were conducted in an impedance tube; one liner with known and predictable properties, and one liner with unknown properties. The tests included tonal excitations in the formats of stepped sine and random noise with frequencies within set boundaries. After post-processing of the captured data, the desired impedance could be analysed in terms of excitated frequencies and sound pressure levels. The conclusions from this project are that both of the liners deviated from their expected behavior, which was that liner 1 should have been unaffected by the alternated sound pressure levels, and liner 3 should have shown bigger affection due to the changed sound pressure level. Since the results were different than expected, there might have been minor sources of error during the measurements. It could be investigated if there is leakage from the mounting of the liners, or if the 3D printing resolution is sufficient. Because of limitations in time, there is more left in this project to investigate. Therefore, conducting similar studies where more frequencies, sound pressure levels, and multi-tonal measurements can be included, is suggested as future work.
Identifer | oai:union.ndltd.org:UPSALLA1/oai:DiVA.org:kth-349725 |
Date | January 2024 |
Creators | Moback, Sara, Nord, Emma |
Publisher | KTH, Skolan för teknikvetenskap (SCI) |
Source Sets | DiVA Archive at Upsalla University |
Language | English |
Detected Language | English |
Type | Student thesis, info:eu-repo/semantics/bachelorThesis, text |
Format | application/pdf |
Rights | info:eu-repo/semantics/openAccess |
Relation | TRITA-SCI-GRU ; 2024:216 |
Page generated in 0.0019 seconds