Return to search

A higher order time domain panel method for linear and weakly non linear seakeeping problems. / Um método de ordem alta de painéis para problemas lineares e fracamente não lineares de comportamento em ondas.

This thesis addresses the development of a weakly non-linear Higher Order Time Domain Rankine Panel Method (TDRPM) for the linear and weakly non-linear seakeeping analysis of floating offshore structures, including wave-current interaction effects. A higher order boundary elements method is adopted based on the body geometry description using Non-uniform Rational B-splines (NURBS) formulation, which can be generated by many standard Computed Aided Design (CAD) softwares widely available, and the several computed quantities (velocity potential, free surface elevation and others) are described using a B-spline formulation of arbitrary degree. The problem is formulated considering wave-current-body interactions up to second order effects, these ones considering the terms obtained by interaction of zero/first order quantities. In order to provide numerical stability, the Initial Boundary Value Problem (IBVP) is formulated in terms of the velocity potential and the local acceleration potential, the later used to predict the hydrodynamic pressure accurately. The zeroth order problem is solved using the double-body linearization instead of the Neumman-Kelvin one in order to allow bluff bodies simulation, leading to very complex expressions regarding the m-terms computation. The method adopts the Rankine sources as Green\'s function, which are integrated using Gauss quadrature in the entire domain, but for the self-influence terms that are integrated using a desingularized procedure. The numerical method is verified initially considering simplified geometries (sphere and circular cylinder) for both, first and second-order computations, with and without current effects. The derivatives of the velocity potential are verified by comparing the numerical m-terms to the analytical solutions for a hemisphere under uniform flow. The mean and double frequency drift forces are computed for fixed and floating structures and the quantities involved in these computations (wave runup, velocity field) are also compared to literature results, including the free floating response of a sphere under current effects. Two practical cases are also studied, namely the wave-induced second order responses of a semi-submersible platform and the wavedrift-damping effect evaluated through the equilibrium angle of a turret moored FPSO. For the former, some specific model tests were designed and conducted in a wave-basin. / Essa tese aborda o desenvolvimento de um método de Rankine de ordem alta no domínio do tempo (TDRPM) para o estudo de problemas lineares e fracamente não lineares, incluindo o efeito de corrente, envolvendo sistemas flutuantes. O método de ordem alta desenvolvido considera a geometria do corpo como descrita pelo padrão Non-uniform Rational Basis Spline (NURBS), que está disponível em diverso0s softwares de Computed Aided Design (CAD) disponíveis, sendo as diversas funções (potencial de velocidades, elevação da superfície-livre e outros) descritos usando B-splines de grau arbitrário. O problema é formulado considerando interações onda-corrente-estrutura para efeitos de até segunda ordem, os de ordem superior sendo calculados considerando as interações somente dos termos de ordem inferior. Para garantir a estabilidade numérica, o problema de contorno com valor inicial é formulado0 com relação ao potencial de velocidade e de parcela local do potencial de acelerações, este para garantir cálculos precisos da pressão dinâmica. O problema de ordem zero é resolvido usando a linearização de corpo-duplo ao invés da linearização de Neumman-Kelvin para permitir a análise de corpos rombudos, o que requer o cálculo de termos-m de grande complexidade. O método adota fontes de Rankine como funções de Green, que são integradas através de quadratura de Gauss-Legendre no domínio todo, exceto com relação aos termos de auto-influência que adotasm um procedimento de dessingularização. O método numérico é inicialmente verificado considerando corpos de geometria simplificada (esfera e cilindro), considerando efeitos de primeira e segunda ordens, com e sem corrente. As derivadas do potencial de velocidade são verificadas comparando os termos-m obtidos numericamente com soluções analíticas disponíveis para a esfera em fluído infinito. As forças de deriva média e dupla-frequência são calculadas para estruturas fixas e flutuantes, sendo as funções calculadas (elevação da superfície, campo de velocidade) comparadas com resultados disponíveis na literatura, incluindo o movimento da esfera flutuante sob a ação de corrente e ondas. São também estudados dois casos de aplicação prática, a resposta de segunda ordem de uma plataforma semi-submersível e o efeito de wave-drift damping para o ângulo de equilíbrio de uma plataforma FPSO ancorada através de sistema turred. No caso da semi-submersível, os ensaios foram projetados e realizados em tanque de provas.

Identiferoai:union.ndltd.org:usp.br/oai:teses.usp.br:tde-09122016-074844
Date02 September 2016
CreatorsRuggeri, Felipe
ContributorsSimos, Alexandre Nicolaos
PublisherBiblioteca Digitais de Teses e Dissertações da USP
Source SetsUniversidade de São Paulo
LanguageEnglish
Detected LanguagePortuguese
TypeTese de Doutorado
Formatapplication/pdf
RightsLiberar o conteúdo para acesso público.

Page generated in 0.0143 seconds