This paper presents a wavelet Galerkin scheme for the fast solution of boundary integral equations. Wavelet Galerkin schemes employ appropriate wavelet bases for the discretization of boundary integral operators. This yields quasi-sparse system matrices which can be compressed to O(N_J) relevant matrix entries without compromising the accuracy of the underlying Galerkin scheme. Herein, O(N_J) denotes the number of unknowns. The assembly of the compressed system matrix can be performed in O(N_J) operations. Therefore, we arrive at an algorithm which solves boundary integral equations within optimal complexity. By numerical experiments we provide results which corroborate the theory.
Identifer | oai:union.ndltd.org:DRESDEN/oai:qucosa:de:qucosa:18494 |
Date | 06 April 2006 |
Creators | Harbrecht, Helmut, Schneider, Reinhold |
Publisher | Technische Universität Chemnitz |
Source Sets | Hochschulschriftenserver (HSSS) der SLUB Dresden |
Language | English |
Detected Language | English |
Type | doc-type:preprint, info:eu-repo/semantics/preprint, doc-type:Text |
Source | Preprintreihe des Chemnitzer SFB 393, 02-19 |
Rights | info:eu-repo/semantics/openAccess |
Page generated in 0.0021 seconds