The risk of moistening wood material should be considered and avoided as varying moisture content in the air causes the wood to swell and shrink. Moisture content in the material has influence on its mechanical properties, which may lead to damage due to reduced strength of the material. Wood material should be stored in places where the external climate does not contribute to an increase in the moisture content of the element. An optimal storage location is where the moisture content of wood material decreases. The purpose of this study is to increase knowledge about how the moisture content in cross-laminated timber (CLT) changes under different storage conditions. To achieve the purpose and get a broad picture of how moisture varies within CLT element, a measurement method that could handle measurements at different depths in the element was chosen. Furthermore, the CLT elements were placed in several storage places that simulated storage conditions at the workplace, where the amount of moisture in the environment varied based on the diurnal variation. The study has shown that, over the entire measurement period, the CLT elements that were placed indoors had a reduction of moisture content by 4.5%. The elements that were placed in a tent hall showed a decreasing of moisture content by about 1.5%. The elements that were placed outdoors with weather protection had an increasing moisture ratio of about 3%. The elements that were placed outdoors without weather protection had been affected greatly by the external climate and during precipitation the moisture content increased even greater. According to the study, CLT should be stored indoors or in a tent hall where the external climate does not contribute to an increase in the element's moisture content compared with outdoor storage. Furthermore, the study showed that cracks in the CLT elements led to higher moisture contents in the material. For the elements that were placed outdoors without weather protection that the cracked element reached its saturation point during precipitation, while the element without cracks showed increase of moisture content by a certain percentage and this increase is much slower.
Identifer | oai:union.ndltd.org:UPSALLA1/oai:DiVA.org:lnu-106186 |
Date | January 2021 |
Creators | Hedström, Vilhelm, Haidari, Shukrullah |
Publisher | Linnéuniversitetet, Institutionen för byggteknik (BY) |
Source Sets | DiVA Archive at Upsalla University |
Language | Swedish |
Detected Language | English |
Type | Student thesis, info:eu-repo/semantics/bachelorThesis, text |
Format | application/pdf |
Rights | info:eu-repo/semantics/openAccess |
Page generated in 0.0033 seconds