Return to search

LiDAR-bildanalys av flutings i södra Norrbotten : Kartering och datering av avvikande isrörelseriktningar

The aim of this study was to map and date glacial flutings with ice flows deviating from the predominating northwesterly ice flow direction in the southern part of Norrbotten County in northern Sweden, and also to investigate if parts of the glacial landscape are older than previously thought. The traditional view is that most landforms in the area were formed during the late Weichselian (W3). Analysis of the new high resolution elevation model (2 m grid) derived from laser scanning was performed after treating the data with a hillshade tool in ArcMap to reveal terrain features such as flutings. The analysis resulted in a map showing four main groups of deviating ice flows (N-S, NO-SV, SO-NV and S-N) and several westerly ice flows. The majority of flutings with deviating ice flows were found in low terrain. This, together with studies suggesting a cold based late Weichselian ice sheet in Norrbotten, implies an old age of the deviating ice flows. The deviating ice flows are interpreted to originate from the first early Weichselian (W1), or predate the onset of the Weichselian glaciation. Some NV-SO flutings were located in high terrain, which implies a younger age relative to the low terrain flutings. They represent the youngest ice flow found in the area, possibly from the second early Weichselian (W2). The new elevation model clearly offers new possibilities for studying small scale landforms and shows that the traditional view of the Weichselian glaciation in northern Swedish needs to be reconsidered.

Identiferoai:union.ndltd.org:UPSALLA1/oai:DiVA.org:umu-96181
Date January 2014
CreatorsVallin, Sara
PublisherUmeå universitet, Institutionen för ekologi, miljö och geovetenskap
Source SetsDiVA Archive at Upsalla University
LanguageSwedish
Detected LanguageEnglish
TypeStudent thesis, info:eu-repo/semantics/bachelorThesis, text
Formatapplication/pdf
Rightsinfo:eu-repo/semantics/openAccess

Page generated in 0.0017 seconds