Return to search

Cooperative coevolutionary mixture of experts : a neuro ensemble approach for automatic decomposition of classification problems

Artificial neural networks have been widely used for machine learning and optimization. A neuro ensemble is a collection of neural networks that works cooperatively on a problem. In the literature, it has been shown that by combining several neural networks, the generalization of the overall system could be enhanced over the separate generalization ability of the individuals. Evolutionary computation can be used to search for a suitable architecture and weights for neural networks. When evolutionary computation is used to evolve a neuro ensemble, it is usually known as evolutionary neuro ensemble. In most real-world problems, we either know little about these problems or the problems are too complex to have a clear vision on how to decompose them by hand. Thus, it is usually desirable to have a method to automatically decompose a complex problem into a set of overlapping or non-overlapping sub-problems and assign one or more specialists (i.e. experts, learning machines) to each of these sub-problems. An important feature of neuro ensemble is automatic problem decomposition. Some neuro ensemble methods are able to generate networks, where each individual network is specialized on a unique sub-task such as mapping a subspace of the feature space. In real world problems, this is usually an important feature for a number of reasons including: (1) it provides an understanding of the decomposition nature of a problem; (2) if a problem changes, one can replace the network associated with the sub-space where the change occurs without affecting the overall ensemble; (3) if one network fails, the rest of the ensemble can still function in their sub-spaces; (4) if one learn the structure of one problem, it can potentially be transferred to other similar problems. In this thesis, I focus on classification problems and present a systematic study of a novel evolutionary neuro ensemble approach which I call cooperative coevolutionary mixture of experts (CCME). Cooperative coevolution (CC) is a branch of evolutionary computation where individuals in different populations cooperate to solve a problem and their fitness function is calculated based on their reciprocal interaction. The mixture of expert model (ME) is a neuro ensemble approach which can generate networks that are specialized on different sub-spaces in the feature space. By combining CC and ME, I have a powerful framework whereby it is able to automatically form the experts and train each of them. I show that the CCME method produces competitive results in terms of generalization ability without increasing the computational cost when compared to traditional training approaches. I also propose two different mechanisms for visualizing the resultant decomposition in high-dimensional feature spaces. The first mechanism is a simple one where data are grouped based on the specialization of each expert and a color-map of the data records is visualized. The second mechanism relies on principal component analysis to project the feature space onto lower dimensions, whereby decision boundaries generated by each expert are visualized through convex approximations. I also investigate the regularization effect of learning by forgetting on the proposed CCME. I show that learning by forgetting helps CCME to generate neuro ensembles of low structural complexity while maintaining their generalization abilities. Overall, the thesis presents an evolutionary neuro ensemble method whereby (1) the generated ensemble generalizes well; (2) it is able to automatically decompose the classification problem; and (3) it generates networks with small architectures.

Identiferoai:union.ndltd.org:ADTP/240828
Date January 2006
CreatorsNguyen, Minh Ha, Information Technology & Electrical Engineering, Australian Defence Force Academy, UNSW
PublisherAwarded by:University of New South Wales - Australian Defence Force Academy. School of Information Technology and Electrical Engineering
Source SetsAustraliasian Digital Theses Program
LanguageEnglish
Detected LanguageEnglish
RightsCopyright Minh Ha Nguyen, http://unsworks.unsw.edu.au/copyright

Page generated in 0.0023 seconds