Return to search

Structures of some weighted composition operators on the space of square integrable functions with respect to a positive measure

Let T be the unit circle,(mu) be a Borel probability measure on T and (phi) be a bounded Lebesgue measurable function on T. in this paper we consider the weighted composition operator W(phi) on L^2(T,mu) defined by
W(phi)f:=(phi)*(f(circle)(tau)), f in L^2(T),
where (tau) is the map (tau)(z)=z^2, z in T.
We will study the von Neumann-Wold decomposition of W(phi) when W(phi) is an isometry and (mu)<< m,where m is the normalized Lebesgue measure on T.

Identiferoai:union.ndltd.org:NSYSU/oai:NSYSU:etd-0612102-010127
Date12 June 2002
CreatorsPan, Hong-Bin
ContributorsJhishen Tsay, Mark C. Ho, Ngai-Ching Wong, Pei Yuan Wu
PublisherNSYSU
Source SetsNSYSU Electronic Thesis and Dissertation Archive
LanguageEnglish
Detected LanguageEnglish
Typetext
Formatapplication/pdf
Sourcehttp://etd.lib.nsysu.edu.tw/ETD-db/ETD-search/view_etd?URN=etd-0612102-010127
Rightsunrestricted, Copyright information available at source archive

Page generated in 0.0014 seconds