Let T be the unit circle,(mu) be a Borel probability measure on T and (phi) be a bounded Lebesgue measurable function on T. in this paper we consider the weighted composition operator W(phi) on L^2(T,mu) defined by
W(phi)f:=(phi)*(f(circle)(tau)), f in L^2(T),
where (tau) is the map (tau)(z)=z^2, z in T.
We will study the von Neumann-Wold decomposition of W(phi) when W(phi) is an isometry and (mu)<< m,where m is the normalized Lebesgue measure on T.
Identifer | oai:union.ndltd.org:NSYSU/oai:NSYSU:etd-0612102-010127 |
Date | 12 June 2002 |
Creators | Pan, Hong-Bin |
Contributors | Jhishen Tsay, Mark C. Ho, Ngai-Ching Wong, Pei Yuan Wu |
Publisher | NSYSU |
Source Sets | NSYSU Electronic Thesis and Dissertation Archive |
Language | English |
Detected Language | English |
Type | text |
Format | application/pdf |
Source | http://etd.lib.nsysu.edu.tw/ETD-db/ETD-search/view_etd?URN=etd-0612102-010127 |
Rights | unrestricted, Copyright information available at source archive |
Page generated in 0.0014 seconds