[Truncated abstract] Spontaneous plant growth and soil development occur at disturbed sites with their extent and nature being variously affected by soil fertility status, local climate and topographic conditions. Soil-plant interactions can be diverse and site-specific within a disturbed landscape. The main purpose of the present study is to evaluate soil characteristics and landscape indices in relation to natural plant growth and soil development under different conditions and for diverse materials. A comprehensive study has been carried out to evaluate spontaneous soil development and plant colonization on various regolith materials at a railway cutting near Jarrahdale bauxite mine and on various substrates comprising waste rock, weathered regolith and replaced topsoil at Scotia (Norseman, Western Australia) and Kelian (East Kalimantan, Indonesia). At Jarrahdale soil development has occurred slowly over 36 years in relation to morphological changes in surface horizons. Soils at several locations exhibit substantial changes in color, texture and structure. The slow soil development is primarily due to low biomass and litter contributions (˜1 Mg/ha) from colonizing plants (e.g. Dryandra sessilis, Eucalyptus marginata and low shrubs) on the cutting shelf and slow litter decomposition. Nutrient accumulation is up to 5 kg N/ha, and 0.5 kg/ha for P and K. Surface soil samples from Jarrahdale are generally acidic (pH < 5.1) and contain low concentrations of total soil carbon (20 g/kg) and nutrients of total nitrogen (0.73 g/kg), bicarbonate-extractable phosphorus (bic-P) (< 2 mg/kg), bic-K (37 mg/kg) and total exchangeable bases (<1.1 cmol/kg, with 24 % base saturation). Soil properties at the Scotia waste dump are mainly associated with alkaline (mean pH = 9) and saline conditions (EC1:5 = 1.01 dS/m). Exchangeable base values are high with average concentrations of exchangeable Ca of 18 cmol/kg and exchangeable Mg of 6 cmol/kg, thus these elements are not a limiting factor for plant nutrition. Patchy plant growth on the waste dump is mostly related to differences in water availability in the arid region and to salinity such that halophytes (saltbushes Maireana and Atriplex) colonize many parts of the waste dump together with some Melaleuca and Eucalyptus species
Identifer | oai:union.ndltd.org:ADTP/221153 |
Date | January 2005 |
Creators | Setyawan, Dwi |
Publisher | University of Western Australia. School of Earth and Geographical Sciences |
Source Sets | Australiasian Digital Theses Program |
Language | English |
Detected Language | English |
Rights | Copyright Dwi Setyawan, http://www.itpo.uwa.edu.au/UWA-Computer-And-Software-Use-Regulations.html |
Page generated in 0.0014 seconds