Return to search

Determination Of Degree Of Mixing In Solid Rocket Propellants

Composite propellants are mainly composed of: crystalline oxidizer, metallic fuel, and polymeric binder. Additives, such as plasticizers, catalysts, bonding agents and curing agents may also be incorporated to propellant compositions in small amounts. These ingredients should be mixed rigorously in order to obtain a uniform microstructure throughout the cast propellant profile.

The quality of the propellant mixture has to be determined quantitatively to improve the product quality and to reduce costs. In this study, it was aimed to develop an easy, cost effective and rapid test method for determining the optimum mixing conditions for the manufacturing process of solid rocket propellants.

An analytical method used in the literature for assessing mixing quality in highly filled polymeric systems is wide-angle x-ray diffractometry (WA-XRD). After finding out the concentration distribution of the components indirectly by WA-XRD, degree of mixing was identified using statistical methods. To accomplish this, series of samples were taken from various locations of the mixing chamber and analyzed by WA-XRD. Degree of mixing calculations based on ratio of intensity arising from aluminum phase over total crystal intensity, and the ratio of intensity arising from ammonium perchlorate phase over total crystal intensity gave satisfactory results. Radial mixing efficiency of planetary mixer was determined, and it was found that mixing at the center was more effective than mixing at the outer regions. Also, by scanning electron microscopy technique (SEM), interactions between binder and solid loading during mixing process were observed. It was seen that polymeric matrix gradually encloses solid particles during mixing.

Identiferoai:union.ndltd.org:METU/oai:etd.lib.metu.edu.tr:http://etd.lib.metu.edu.tr/upload/2/12607751/index.pdf
Date01 October 2006
CreatorsYesilirmak, Yener
ContributorsYilmazer, Ulku
PublisherMETU
Source SetsMiddle East Technical Univ.
LanguageEnglish
Detected LanguageEnglish
TypeM.S. Thesis
Formattext/pdf
RightsTo liberate the content for METU campus

Page generated in 0.0118 seconds