In this thesis we study Wiener’s lemma. The classical version of the lemma, whose realm is a Banach algebra, asserts that the pointwise inverse of a nonzero function with absolutely convergent Fourier expansion, also possesses an absolutely convergent Fourier expansion. The main purpose of this thesis is to investigate the validity inalgebras endowed with a quasi-norm or a p-norm.As a warmup, we prove the classical version of Wiener’s lemma using elemen-tary analysis. Furthermore, we establish results in Banach algebras concerning spectral theory, maximal ideals and multiplicative linear functionals and present a proof Wiener’s lemma using Banach algebra techniques. Let ν be a submultiplicative weight function satisfying the Gelfand-Raikov-Shilov condition. We show that if a nonzero function f has a ν-weighted absolutely convergent Fourier series in a p-normed algebra A. Then 1/f also has a ν-weightedabsolutely convergent Fourier series in A.
Identifer | oai:union.ndltd.org:UPSALLA1/oai:DiVA.org:lnu-27270 |
Date | January 2013 |
Creators | Fredriksson, Henrik |
Publisher | Linnéuniversitetet, Institutionen för matematik (MA) |
Source Sets | DiVA Archive at Upsalla University |
Language | English |
Detected Language | English |
Type | Student thesis, info:eu-repo/semantics/bachelorThesis, text |
Format | application/pdf |
Rights | info:eu-repo/semantics/openAccess |
Page generated in 0.0022 seconds