The aim of this thesis is to assess how the configuration of linear and non-linearwind resource grids impacts the optimization.Three different software tools are used for this study: WAsP (linear model) includedin WindPRO, and WindSim (a non-linear model) - a CFD tool, and WindPRO forthe optimization. With the same configuration for wind resources, WAsP andWindSim will run to calculate the wind resource grids, .rsf or .wrg format, whichwill be compared in the post processing tab of WindPRO (from CFD interface).Using different optimization algorithms, the results from two software will becompared. The test site is flat terrain in the sea with no complexity (0,0002roughness and no orography or obstacle), and the chosen turbine here is Enercon40.3 (55m hub height, with the rated power at 14 m/s), and the wind is coming fromone direction, in our case North, which means sector 0.After comparison of the resource files from linear and non-linear wind resourcegrids, the optimization and comparison is ran for the two wind resource grids (linearand non-linear). The results of the optimization are also compared with optimizationresults of Eftun Yilmaz’s thesis (Eftun Yilmaz, 2013). We can see from the resultsthat WindSim gives almost 40% bigger values for the production. The results arecomparable with findings of Eftun Yilmaz thesis.
Identifer | oai:union.ndltd.org:UPSALLA1/oai:DiVA.org:uu-217558 |
Date | January 2013 |
Creators | Dragoi, Ion |
Publisher | Uppsala universitet, Institutionen för geovetenskaper |
Source Sets | DiVA Archive at Upsalla University |
Language | English |
Detected Language | English |
Type | Student thesis, info:eu-repo/semantics/bachelorThesis, text |
Format | application/pdf |
Rights | info:eu-repo/semantics/openAccess |
Page generated in 0.0019 seconds