The liquid fraction of foam is an important quantity in engineering process control and essential to interpret foam rheology. Established measurement tools for the liquid fraction of foam, such as optical measurement or radiography techniques as well as weighing the foam, are mostly laboratory-based, whereas conductivity-based measurements are limited to the global measurement without detailed spatial information of liquid fraction. In this work, which combines both types of measurement techniques, the conductivity-based wire-mesh sensor is compared with neutron radiography. We found a linear dependency between the liquid fraction of the foam and the wire-mesh readings with a statistical deviation less than 15%. However, the wire-mesh sensor systematically overestimates the liquid fraction, which we attribute to liquid bridge formation between the wires.
Identifer | oai:union.ndltd.org:DRESDEN/oai:qucosa:de:qucosa:89148 |
Date | 02 February 2024 |
Creators | Ziauddin, Muhammad, Schleicher, Eckhard, Trtik, Pavel, Knüpfer, Leon, Skrypnik, Artem, Lappan, Tobias, Eckert, Kerstin, Heitkam, Sascha |
Publisher | IOP Publishing |
Source Sets | Hochschulschriftenserver (HSSS) der SLUB Dresden |
Language | English |
Detected Language | English |
Type | info:eu-repo/semantics/publishedVersion, doc-type:article, info:eu-repo/semantics/article, doc-type:Text |
Rights | info:eu-repo/semantics/openAccess |
Relation | 1361-648X, 015101, 10.1088/1361-648X/ac9d16 |
Page generated in 0.0027 seconds