Inductive charging, a form of wireless charging, uses an electromagnetic field to transfer energy between two objects. This emerging technology offers an alternative solution to users having to physically plug in their electric vehicle (EV) to charge. Whilst manufacturers claim inductive charging technology is market ready, the efficiency of transfer of electrical energy is highly reliant on the accurate alignment of the coils involved. Therefore understanding the issue of parking misalignment and driver behaviour is an important human factors question, and the focus of this paper. Two studies were conducted, one a retrospective analysis of 100 pre-parked vehicles, the second a dynamic study where 10 participants parked an EV aiming to align with a charging pad with no bay markings as guidance. Results from both studies suggest that drivers are more accurate at parking laterally than in the longitudinal direction, with a mean lateral distance from the centre of the bay being 12.12 and 9.57 cm (retrospective and dynamic studies respectively) compared to longitudinally 23.73 and 73.48 cm. With current inductive charging systems having typical tolerances of approximately ±10 cm from their centre point, this study has shown that only 5% of vehicles in both studies would be aligned sufficiently accurately to allow efficient transfer of electrical energy through induction.
Identifer | oai:union.ndltd.org:DRESDEN/oai:qucosa:de:qucosa:72829 |
Date | 18 November 2020 |
Creators | Birrell, Stewart A., Wilson, Daniel, Yang, Chek Pin, Dhadyalla, Gunwant, Jennings, Paul |
Publisher | Elsevier |
Source Sets | Hochschulschriftenserver (HSSS) der SLUB Dresden |
Language | English |
Detected Language | English |
Type | info:eu-repo/semantics/publishedVersion, doc-type:article, info:eu-repo/semantics/article, doc-type:Text |
Rights | info:eu-repo/semantics/openAccess |
Relation | https://doi.org/10.1016/j.trc.2015.04.011, 0968-090X |
Page generated in 0.0018 seconds