Return to search

Design of an Automated Test Setup for Power-Controlled Nerve Stimulator Using NFC for Implantable Sensors

Electrical stimulation on nerves is a relatively new area of research and has been proved to speed up recoveryfrom nerve damage. In this work, the efficiency and stability of antennas integrated on printed circuit boards provided by the department of electrical engineering are examined. An automated test bench containing a stepmotor with a slider and an Arduino is created. Different setups were used when measuring on the boards, which resulted in that the largest antenna gave the most stable output despite the distance between transmitterand receiver. The conclusion was that the second best antenna and the smallest one would be suitable as well,and the better choice if it is to be implemented under the skin. A physical setup consisting of LEDs, an Arduino, a computer, and a function generator was created to examinethe voltage control functionality, where colored LEDs were lit depending on the voltage level. The functionality was then implemented in a circuit that in the future shall be integrated on the printed circuit board. To control high voltages a limiter circuit was examined and implemented. The circuit was simulated and tested, with a realization that a feature covering voltage enlargement is needed for the future.

Identiferoai:union.ndltd.org:UPSALLA1/oai:DiVA.org:liu-176212
Date January 2021
CreatorsAasa, Amanda, Svennblad, Amanda
PublisherLinköpings universitet, Elektroniska Kretsar och System, Linköpings universitet, Elektroniska Kretsar och System
Source SetsDiVA Archive at Upsalla University
LanguageEnglish
Detected LanguageEnglish
TypeStudent thesis, info:eu-repo/semantics/bachelorThesis, text
Formatapplication/pdf
Rightsinfo:eu-repo/semantics/openAccess

Page generated in 0.0021 seconds