CNN-based (Convolutional Neural Network) visual object detectors often reach human level of accuracy but need to be trained with large amounts of manually annotated data. Collecting and annotating this data can frequently be time-consuming and financially expensive. Using generative models to augment the data can help minimize the amount of data required and increase detection per-formance. Many state-of-the-art generative models are Generative Adversarial Networks (GANs). This thesis investigates if and how one can utilize image data to generate new data through GANs to train a YOLO-based (You Only Look Once) object detector, and how CAD (Computer-Aided Design) models can aid in this process. In the experiments, different models of GANs are trained and evaluated by visual inspection or with the Fréchet Inception Distance (FID) metric. The data provided by Ericsson Research consists of images of antenna and baseband equipment along with annotations and segmentations. Ericsson Research supplied the YOLO detector, and no modifications are made to this detector. Finally, the YOLO detector is trained on data generated by the chosen model and evaluated by the Average Precision (AP). The results show that the generative models designed in this work can produce RGB images of high quality. However, the quality reduces if binary segmentation masks are to be generated as well. The experiments with CAD input data did not result in images that could be used for the training of the detector. The GAN designed in this work is able to successfully replace objects in images with the style of other objects. The results show that training the YOLO detector with GAN-modified data compared to training with real data leads to the same detection performance. The results also show that the shapes and backgrounds of the antennas contributed more to detection performance than their style and colour.
Identifer | oai:union.ndltd.org:UPSALLA1/oai:DiVA.org:liu-170886 |
Date | January 2020 |
Creators | Thaung, Ludwig |
Publisher | Linköpings universitet, Datorseende |
Source Sets | DiVA Archive at Upsalla University |
Language | English |
Detected Language | English |
Type | Student thesis, info:eu-repo/semantics/bachelorThesis, text |
Format | application/pdf |
Rights | info:eu-repo/semantics/openAccess |
Page generated in 0.0088 seconds